Diamond Detectors as Beam Monitors

E. Griesmayer, CERN ATLAS & CIVIDEC Instrumentation B. Dehning, E. Effinger, CERN BI

BIW10, Santa Fe, May 2-6, 2010

CVD Diamond

- Solid-state ionization chamber
- Compact design (10 mm x 10 mm x 0.5 mm)
- Size limitation (< 130 mm)
- Proven technology: Diamond Detectors (GB), Diamond Materials (GER), II-VI (USA)
- Developed in RD42 at CERN (starting 1995)
- Implemented in all four LHC experiments (ATLAS, CMS, LHCb and Alice)

Properties of CVD Diamond

- Sensitive (single-particle detection)
- Robust (high-intensity DC applications)
- Fast (ns time response)
- Radiation resistant (10 MGy)
- High thermal conductivity (5x copper)

Diamond Materials

pCVD, 10 mm x 10 mm

sCVD, 5 mm x 5 mm

Diamond Detector

Detector + Preamplifier

Preamplifier

- Current amplifier
- Gain 20 dB, 40 dB
- Noise < 1 mV rms
- 4 mV/MIP max. 1 V
- Rise time < 1 ns
- Pulse width < 2 ns

Three Examples

- 1. CERN REX-ISOLDE
- 2. CERN SPS
- 3. CERN LHC

Editor's Note: PDF version of slides from Beam Instrumentation Workshop 2010, Santa Fe, NM

Example 1: REX-ISOLDE

REX-ISOLDE Detector

REX-ISOLDE

ISOLDE Test

- sCVD diamond detector
- 22.8 MeV C-ions (10 um penetration)
- Installation in vacuum
- In cooperation with Bergoz Instrumentation

Single-Particle Response

Energy Resolution

ISOLDE Summary

- + Energy resolution = 0.6%
- + Intrinsic time resolution = 30 ps
- + Double pulse resolution = 10 ns
- + Reproducibility for low intensities
- Problems with pile up

Editor's Note: PDF version of slides from Beam Instrumentation Workshop 2010, Santa Fe, NM

Example 2: CERN - SPS

SPS Detector

SPS Test

- pCVD diamond beam monitor
- Beam-halo monitoring
- SPS BA5 downstream of a LHC collimator
- 250 m cable (CK50, RF coaxial low-loss)
- CERN BI, CIVIDEC Instrumentation

SPS Installation

Calibration with Sr⁹⁰ Source

Signal & Noise

Average Pulse Shape

Physics Particles

Multi-Particle Pulse

Particle Cascade

Beam Losses

High-Intensity Losses

200 MHz SPS RF-Frequency

Editor's Note: PDF version of slides from Beam Instrumentation Workshop 2010, Santa Fe, NM

Example 3: CERN - LHC

Editor's Note: PDF version of slides from Beam Instrumentation Workshop 2010, Santa Fe, NM

CERN LHC

27 km circumference 89 us revolution period 2800 bunches / turn 25 ns bunch spacing 2.5 ns RF period 400 MHz RF frequency

LHC Test

- pCVD diamond beam monitors
- Beam-halo measurements
- Mounted in the LHC collimation area
- 200 m cable (CK50)
- CERN BI, CIVIDEC Instrumentation

LHC Installation

Detector Collimator

Ionization chamber

Beam pipes

LHC Installation

Collimator

Beam pipes

Detector

Calibration

Calibration

Physics Events - Right Side

Physics Events - Left Side

Timing Properties

Linearity

LHC Orbit

400 MHz LHC RF

LHC Phase Measurement

Summary (1/3)

CVD Diamond Beam Monitors are:

- Sensitive: single-particle detection
- High dynamic range: limited by electronics
- Intrinsically fast: 1 ns rise time, 2 ns pulse width

Summary (2/3)

For beam instrumentation applicable to:

- Halo measurements (2 ns double pulse resolution)
- Beam intensity monitoring (dynamic range)
- Energy measurement (< 1% resolution)
- Particle counting (up to GHz)
- TOF measurements (30 ps resolution)

Summary 3/3

Potential use in:

- HEP accelerators (beam loss monitoring, beam protection for protons, ions)
- Synchrotron light sources
- Medical facilities

Future:

- Photon measurements
- Neutron measurements

