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Scintillators are a standard component in
transverse beam profiling diagnostics:

«Linear response over large dynamic range.

*Can be relatively resistant to dose dependent
darkening and aging effects at low intensities.

*May suffer saturation and deviation from linearity
at high intensities.

Calorimeters can be complementary diagnostics:
«Can tolerate higher doses

*Highly nonlinear response to irradiation intensity.
«Intense source of optical radiation.

*Good time response in 100ns to ~10usec range.

The K+ beams were imaged at
the target plane onto both the
alumina scintillator and
tungsten foils.

The beam intensity profile is
derived by normalizing the
scintillator profile against
the measured beam current
and voltage.
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Saturation in scintillator may
\affect the measurement of the

peak values.
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The beam distribution is recovered
from the foil profile by a power law.

Measured widths
are identical

I (TR

Intensity (normalized)

4 5 6

Position (mm)

. o - The equation is solved to determine the tungsten
o ne -d imensiona I heat eq uatl O foil calorimeter temperature response to prescribed
beam flux.

The thermal diffusion time set the

appropriate time and length scales and
must be rationalized with the beam pulse
duration, foil thickness, and transverse
optical resolution.
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The 1D heat conduction equation describes the longitudinal 3000
flow of heat in the system, due to temperature gradients,

thermal conductivity, and heat sources.

pc,dT =0,(Kd,T)+ S(x.1)
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*Streak-spectrometer records 650nm 3500
radiation.

*Reconstruct foil temperature.

*Beam intensity history is generated.
*Heat equation is solved to match the
calculated temperature with the
reconstructed pyrometer data.
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Pyrometer data and fitting
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