A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Young, A.

Paper Title Page
TUPSM028 LCLS Resonant Cavity Beam Position Monitors 177
 
  • A. Young, R.G. Johnson
    SLAC, Menlo Park, California
  • R.M. Lill
    ANL, Argonne
  • S.R. Smith
    CERN, Geneva
 
 

The Linac Coherent Light Source (LCLS) is a free-electron laser (FEL) at SLAC producing coherent 1.5 angstrom x-rays. This requires precise and stable alignment of the electron and photon beams in the undulator. We describe construction and operational experience of the beam position monitor (BPM) system which allows the required alignment to be established and maintained. Each X-band cavity BPM employs a TM010 monopole reference cavity and a single TM110 dipole cavity detecting both horizontal and vertical beam position. The processing electronics feature low-noise single-stage three-channel heterodyne receivers with selectable gain and a phase-locked local oscillator. Sub-micron position resolution is required for a single-bunch beam of 200 pC. We discuss the specifications, commissioning and performance of 36 installed BPMs. Single shot resolutions have been measured to be about 200 nm rms at a beam charge of 200 pC.

 

poster icon

Poster

 
TUPSM080 11.424 GHz Stripline Transversal Filter for Sub-Picosecond Bunch Timing Measurements 367
 
  • D. Van Winkle, J.D. Fox, A. Young
    SLAC, Menlo Park, California
 
 

Measurement of time-of-arrival or instantaneous longitudinal position is a fundamental beam diagnostic. We present results from a stripline transversal periodic coupler structure which forms the heart of a sub-ps beam timing detector. This filter structure approximates a sinx/x response in the frequency domain which corresponds to a limited pulse length response in the time domain. These techniques have been used extensively in beam feedback systems at 3 GHz center frequencies with operational single-shot resolutions of 200 fs[1]. We present a new design, based on a 11.424 GHz center frequency, which is intended to offer a factor of four improvement in time resolution. Two-dimensional electromagnetic simulation results are shown, and the design optimization approach leading to the final circuit implementation is illustrated. The prototype circuit has been fabricated on 60mil Rogers 4003 and lab frequency domain and time domain data are compared to the 2-D simulation results. Performance of the prototype circuit is shown with applicability to sub-ps beam measurements in LINAC and FEL applications.