A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Lee, S.-H.

Paper Title Page
TUPSM043 High-Power Hard X-ray Beam Position Monitor Development at the APS 233
 
  • B.X. Yang, G. Decker, P.K. Den Hartog, S.-H. Lee
    ANL, Argonne
 
 

Accurate and stable x-ray beam position monitors (XBPMs) are key elements in a feedback system for obtaining desired x-ray beam stability. For the low-emittance mode of operation of the APS, the cross sections of the undulator x-ray beams are not upright ellipses, and the effective beam sizes in the horizontal and vertical planes depend on the undulator gaps. These beam characteristics introduce strong gap dependence in blade-type XBPMs designed for upright elliptical beams. A center-of-mass detector XBPM will significantly reduce the gap dependence of the BPM readings. We report the development status of a high-power center-of-mass XBPM at the APS. We note that users often discard more than 50% of the undulator beam power outside of the monochromatic beam. These photons can be intercepted by the limiting aperture of the beamline, and then the x-ray fluorescence footprint can be imaged onto a detector. The position of the x-ray beam can be read out using position-sensitive silicon photodiodes. Thermal analyses show that the XBPM can be used for the measurement of beam with a total power up to 20 kW for the 7-GeV / 200-mA operation of a 5-m undulator in the APS.