A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Harasimowicz, J.

Paper Title Page
TUPSM047 Beam Position Monitor Development for the USR 252
 
  • J. Harasimowicz, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire
  • J. Harasimowicz
    The University of Liverpool, Liverpool
 
 

Capacitive pick-ups for closed-orbit measurements are presently under development for an Ultra-low energy Storage Ring (USR) at the future Facility for Low-energy Antiproton and Ion Research (FLAIR). Low-intensity, low-energy antiprotons impose challenging demands on the sensitivity of the monitoring system. The non-destructive beam position monitors (BPMs) should be able to measure 107 particles and give sufficient information on the beam trajectory. This contribution presents the status of the BPM project development. Main goals of the investigation include optimization of the mechanical design and preparation of a narrowband signal processing system.

 
TUPSM048 Faraday Cup for Low-Energy, Low-Intensity Beam Measurements at the USR 257
 
  • J. Harasimowicz, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire
  • J. Harasimowicz
    The University of Liverpool, Liverpool
 
 

For destructive beam intensity measurements, electrostatic Faraday cups will be incorporated into the Ultra-low energy Storage Ring (USR) and its transfer lines at the Facility for Low-energy Antiproton and Ion Research (FLAIR). This multipurpose machine will offer both slow and fast extracted beams resulting in a wide range of intensities and varying time structure of the beam. In this contribution we present the particular challenges of measuring the beam intensity in the USR, results from numerical optimization studies, as well as the design of the cup.

 
TUPSM048 Faraday Cup for Low-Energy, Low-Intensity Beam Measurements at the USR 257
 
  • J. Harasimowicz, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire
  • J. Harasimowicz
    The University of Liverpool, Liverpool
 
 

For destructive beam intensity measurements, electrostatic Faraday cups will be incorporated into the Ultra-low energy Storage Ring (USR) and its transfer lines at the Facility for Low-energy Antiproton and Ion Research (FLAIR). This multipurpose machine will offer both slow and fast extracted beams resulting in a wide range of intensities and varying time structure of the beam. In this contribution we present the particular challenges of measuring the beam intensity in the USR, results from numerical optimization studies, as well as the design of the cup.