A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Giacomini, T.

Paper Title Page
TUPSM020 Beam Induced Fluorescence Monitor–Spectroscopy in Nitrogen, Helium, Argon, Krypton, and Xenon Gas 156
 
  • F. Becker, P. Forck, T. Giacomini, R. Haseitl, B. Walasek-Höhne
    GSI, Darmstadt
  • F.M. Bieniosek, P.N. Ni
    LBNL, Berkeley, California
  • D.H.H. Hoffmann
    TU Darmstadt, Darmstadt
 
 

As conventional intercepting diagnostics will not withstand high intensity ion beams, Beam Induced Fluorescence (BIF) profile monitors constitute a preeminent alternative for non-intercepting profile measurements. This diagnostic technique makes use of optical emission of beam-excited gases. Recently BIF became an important diagnostic technique for beam profile measurement with applicability in beam tuning over a wide range of beams and accelerator conditions. Beam induced fluorescence spectra in the range of 300 - 800 nm were recorded with an imaging spectrograph for 5 MeV/u proton, S(6+) and Ta(24+) beams in nitrogen, Xe, Kr, Ar, Ne and He at 10-3 mbar gas pressure. Optical transitions were identified and associated with corresponding beam profiles. Effective light yields, normalized to the differential energy loss, are presented for all gas-species investigated. Since residual gas ionization is the basic process for BIF-monitors as well as for Ionization Profile Monitors (IPM), BIF-results are compared to IPM measurement data.