A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Cianchi, A.

Paper Title Page
TUPTPF061 Considerations on ODR Beam-Size Monitoring for Gamma 1000 Beams 253
 
  • A.H. Lumpkin
    Fermilab, Batavia
  • M. Cestelli Guidi, E. Chiadroni
    INFN/LNF, Frascati (Roma)
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma
  • C. Yao
    ANL, Argonne
 
 

We have previously experimentally observed and modeled the near-field optical diffraction radiation (ODR) generated by a 3-nC micropulse of a 7-GeV electron beam at the Advanced Photon Source (APS). Due to the high gamma of ~14,000, the scaling factor of γλ/2π was about 1.4 mm for 0.628 um radiation. Thus, a standard CCD camera was sufficient for imaging at an impact parameter of 1.25 mm. The extension of this technique to γ 1000 is challenged by the ·1014 reduction in visible light photon production compared to the APS case. We discuss the feasibility of monitoring at a new Fermilab facility a high average current linac beam of 3000 times more charge in a video frame time and with a more sensitive 12- to 16-bit camera. Numerical integrations of our base model show beam size sensitivity for ±20% level changes at 200- and 400-um base beam sizes. We also evaluated impact parameters of 5 σy and 12 σy for both 800-nm and 10-um observation wavelengths. The latter examples are also related to a proposal to apply the technique to an ~ 0.94 TeV proton beam, but there are trades on photon intensity and beam size sensitivity to be considered at such gammas.