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COHERENT SPONTANEOUS EMISSION IN HIGH GAIN
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Abstract with € = 2 (a unit vector in ther direction) for a planar

. . . . - undulator an@’ = z + iy for a helical undulator, we have
We investigate finite pulse effects in self-amplified spon- =y

taneous emission (SASE), especially the role of coherent ec K
spontaneous emission (CSE) in the start and the evolu- J=—g-—e
tion of the free-electron laser (FEL) process. When the

FEL interaction is negligible,we solve the One'dimenSionq{/hereg is the beam cross Sectiom{ is the undulator
Maxwell equation exactly and clarify the meaning of thestrength parameter for the helical undulator &\d'.J] for
slowly varying envelope approximation (SVEA). In thethe planar undulator after averaging over the undulator pe-
exponential gain regime, we solve the coupled Vlasovjod £,. We have also assumed that tfi& electron enters
Maxwell equations and extend the linear theory to @he undulator at = tj(j =1,..,N)andz = 0. Thus, the
bunched beam with energy spread. A time-dependent, nggngitudinal position of the electron i5(t) = Be(t —t;),
linear simulation algorithm is employed to study the CSEyhere 3¢ is the average longitudinal velocit@(¢) is the

N
"2 ”'““Z;(;(Z_Zj(t))@(t_m, @

effect for a general beam distribution. step function, i.e.©(t) = 1 for ¢ > 0 and O otherwise.
In trle absence of FEL interaction, the electric field in the
1 INTRODUCTION form E, = €E(z,t) + c.cis found to be

ik slz—c(t—t;)]

efikb[z+c(t7tj)}

attention as the electron bunches become shorter and more
intense in current experiments demonstrating the principle
o_f self—e_xmplified spontaneous emission (_SASE). The one- {(—c(t —t;) < 2 < fe(t — tj)] }7
dimensional (1D) theory of SASE [1, 2] is based on the (1+0)

solution of the linearized Vlasov-Maxwell equations, for 3)
the cases of a coasting beam with energy spread [1] and

a bunched monochromatic beam [2]. Attempts have beavherex, = ecZoK/(40v0), Zo = cpo = 3779, and the
made to include the energy spread for a bunched beafarward and the backward wavenumbers are

but only coherent bunching at the resonant wavelength was k.3 k.3

considered [3]. In Ref. [4], the evolution of the electric kp=1= 7 ko =777 g 4

field is studied with the individual particle formulation for ) .
a bunched monochromatic beam, and the contribution &duation (3) describes a sum &fforward and backward

the incoherent and the coherent SASE are identified. If{2ve packets, with the forward wave packets having much
this paper, we extend the linear theory to a bunched bed#pher amplitude and shorter duration due to relativity.

with energy spread and calculate the effect of CSE for the FOF coherent spontaneous emission, we can define a rel-
high gain FEL. We also present a time-dependent, nonlif{ivé position¢ = 2 — et along the bunch and turn the
ear simulation algorithm that takes CSE into account for afHiM into an integral by using the smooth approximation

arbitrary beam distribution. N
> [d€n©) (5)
j=1

N
Coherent spontaneous emission (CSE) has attracted muEh_K1 Z{
j=1

2 COHERENT SPONTANEOUS
EMISSION wheren, is the maximum line density and¢) is the initial
bunch density function)(< x(¢) < 1). For a single-step

The 1D Maxwell equation for the transverse electric fiquI;mse,X(g) = O(=¢), the electric field in front of the pulse
of a plane wave propagating along the undulator axss (0 < ¢ < (1-p)z)is

52 1 62 R o - — K1no _ ikg(z—ct) )
(@ - g@) EJ-(Zat) = ,UOEJJ_(ZJt); (1) EC Zku ! c ] (6)
Only the forward wave component is present as expected.
whereyy is the permeability of free space, and the charg@he constant term terminates the field at the slippage dis-
density term is absent here due to transverse uniformityance¢; = (1 — 3)z. The electric field inside the pulse is

Writing the transverse current ds (z,t) = &J(z,t) +c.c., given by
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Thus, the coherent radiation comes from the sharp edgeTte Vlasov equation for the electron distribution is [1, 2]

& = 0 for such a single-step pulse or from any density gra-

dient for a general bunch distribution. A flat-top bunch can 3_F o 8_F wOF _ 0 (15)

be constructed from two single-step pulses separated by the 0z ull 00 oy

bunch length,, and the relative intensity of the incoherent

versus the coherent spontaneous emissions can be obtainrexs = eK/(2ygmc?) is a constant.

from Egs. (3) and (6): In the exponential gain regime and without external field,

) ) ) we can regard the electric field in Eq. (15) as a small, first-
Lincon Nk} _ (kysl)® _ 1 (27rlb> (8) order quantity. This includes the coherent and the incoher-
Leon ng N N\ A\ ’ ent spontaneous emissions as well as the stimulated emis-
sion. Hence the distribution functiofl consists of two
éerms: the zeroth-order term is the initial smooth distribu-
ion given by

where), = (1 — B)\,/B is the forward resonant wave-
length. Equation (8) was derived in Ref. [5] by considerin
the initial coherent bunching factor. F&F ~ 10'° and
Iy, ~2mm,\. < 120 nm makes the incoherent power
larger, while A, > 120 nm favors the coherent power.
Thus, the CSE effect should be negligib!e_ for the pr.Oposevc\j/hereV(n) is the initial energy spread of the beam nor-
x-ray FEL projects, but may play a significant role in cur-

rent experiments in the IR and visible region. We note tharpahzed tofdyV(n) = 1, and the first-order term /'

. . . %ontains both the initial fluctuatioA Fy and the bunching
the flat-top model requires the electron density to vanishl - vior through FEL interaction. Approximatiiywith
within A, and tends to exaggerate the coherent effect. Fy in the third term of Eq. (15) yieids

0 .

3 LINEAR ANALYSIS z ;!
AF = AF, +/§2/ dsE(Ho,s)e’ooa—nFo(Go,n,s),

For FEL interaction, the backward wave is dropped and the 0
slowly varying envelope approximation (SVEA) is invoked 17
in the form . .
' wherety = 0 — 2k,nz + 2k,ns. Since the FEL gain be-
E(z,t) = E(z, t)eiks(z=et) comes negligible when the width &f(n) is much larger
T(z,0) = T (2, t)e““f(z_“), ) than the FEL parameter[1], where
where& and.7 are assumed to vary slowly withandt. e2cZoK2ng \ \/°
The Maxwell equation becomes P= <32,ygmcgkzg> ’ (18)
0 10 Z . . .
<6_ + _E> &= —TOJ. (10) we have2k,nz ~ 2k,pz ~ 2w in the exponential gain
S regime. We can therefore make the approximatipn: 6
It is convenient to define the electron coordinate as in the slowly varyingS and Fy but keep the fast oscillatory

k. phaseei?o. Inserting Egs. (16) and (17) into Eq. (14) and
0 =kf(z—ct) +kyz = a-79 (z — Bet) = ky& (11)  applying the Laplace transformation, we obtain

and change the independent variables ffent) to (z, ). ik 50 d\ v
. _Kaky —it;, [ AN oix[kwz—(0—0,)] (n)
From Eq. (2), the transverse current is £ T Z e / o€ /dn—/\ —7
N J
__e K N\ p—if 9

wheref; = —kyct;. Inserting this into Eq. (10), we repro- i o .
duce the forward wave component of Eq. (3). The XM-integration is along a straight path parallel to the

The phase space distribution of the electron beam feal axis and below all singularities of the integrand. It is
given by the Klimontovich distribution [1] nonzero only whefl — 0; < k,z or§ — &; < & (the slip-

page length). Hence the total electric fielddas the sum
ky N of fields that originated from the discrete radiators prior to
F(0,n,2) = no Z 3(0—6;(=))d(n—nj(2)),  (A3) g putwithin the slippage length. The electron gain medium

=1 is treated as a continuous flugdla Vlasov and is justified

wherer = (y—90) /70 is the conjugate variable to Equa-  in Ref. [4]. For a monochromatic beam with(n) = 4(n),
tion (10) can now be written as Eqg. (19) reproduces the result of Ref. [2]. Coherent SASE
can be evaluated by turning the sum into an integral follow-
(3 + kﬂﬁ) E = kynge / dnF(0,n,z). (14) ingEq.(5)and calculating the contribution of the essential
9z 96 singularity atA = 0 numerically [4].
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Following Ref. [4], one can re-express Eqg. (19) as:

0.025 =

0;<6 . a

:‘ilk’f —i6; /Oo+l dv —iv(6—0;) 0.020 | |
E(Z, 6) = e Wi —e 4 J
Qku zj: —ootie 2w - |
d\ eQi)\kuz V(ﬂ) g

a9 1™/ .00\ d N 20 0.010 il

X/2MI%xwa@y/’U—n’ @0 2 ’
wheree is an infinitesimal and positive number, oo 1
dV d 0.000 | ‘ ‘ ‘ ‘ ‘ ‘ 4

DO0.6) =23 + 0.6 [T, @) S

Position along the bunch

and
Figure 1: Coherent SASE intensily,|> versus2pf (p =

1/(407), z = 5): (a) without initial energy spread, (b) with
a flat-top energy spread of width

L (" g
wWﬁﬂ—we_%)AfAGMGSl- (22)
For the coasting beamy(4,6') = 1andD(\,v) = Ois the
dispersion relation including the energy spread [1]. Eq
tion (21) provides a generalization to the bunched bea
When the bunch distribution does not change appreciab?}a:;
over the slippage lengthy(6.6,) =~ x(¢) from Eq. (22),
and the FEL gain is affected only by the local electron cu
rent as expected.

ué’ypterval Ar. Thus, the Fourier transform gf(4) is defined
r%nly between the Nyquist critical frequengy = ¢/(2),)

fw. = cks/2, and the coherent bunching around the res-
t frequencyk; is left out.

r We modify this time-dependent approach to include the
CSE effect by decreasing the sampling interval to cover
the resonant part of the bunch spectrum. For example, we
can divide the bunch int8 N, sections so that the criti-

4 SIMULATION ALGORITHM cal frequency istcky. The spectral power outside this fre-

In order to handle a general beam distribution and to studi€ncy range should be sufficiently small to eliminate the
the nonlinear regime, we have developed a simulation cog&ect of aliasing. The electric field is computed and aver-
that is based on the individual particle formulation of FEL2ged over the resonant wavelength, in consistent with the

equations: slowly varying envelope approximation. Compared with
the multi-frequency approach to CSE simulation [8], the
% o (23) time-dependent approach is more straightforward and can

EERRA include the shot noise in a natural way. Figure 1 shows an

on; _ _ae® 1 c.c (24) example of simulation where we have intentionally turned
0z o the noise off. The bunch is assumed to be longer than the

0 10 _ 0, slippage length. CSE from the trailing part of the bunch

{E + %%] a=x(0) [e7" +(e7")], (25)  \ithin the slippage length (i.e) < 2p8 < z) has been

amplified and is shown in Fig. 1(a) for a case without ini-

wherez = 2k,pz, 7 = n/p, anda = 2pgk,E/(k1n,) tial energy spread and in Fig. 1(b) for the case with a flat-
is the scaled electric field. Equation (25) follows directlytop energy spread of width Figure 1(a) agrees very well
from Eq. (14), where the contribution of the smooth (cowith the calculation of Eq. (19). Such a simulation tech-
herent) distribution and the fluctuating (incoherent) part angique is also capable of studying the nonlinear behavior of
explicitly separated into two terms. The partial derivativghe incoherent and the coherent SASE.
with respect td in Eq. (25) describes the slippage between
the electron and the radiation field. 5 REFERENCES
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