
COHERENT SPONTANEOUS EMISSION IN HIGH GAIN
FREE-ELECTRON LASERS �

Zhirong Huangand Kwang-Je Kim, APS/ANL, Argonne, IL 60439

Abstract

We investigate finite pulse effects in self-amplified spon-
taneous emission (SASE), especially the role of coherent
spontaneous emission (CSE) in the start and the evolu-
tion of the free-electron laser (FEL) process. When the
FEL interaction is negligible, we solve the one-dimensional
Maxwell equation exactly and clarify the meaning of the
slowly varying envelope approximation (SVEA). In the
exponential gain regime, we solve the coupled Vlasov-
Maxwell equations and extend the linear theory to a
bunched beam with energy spread. A time-dependent, non-
linear simulation algorithm is employed to study the CSE
effect for a general beam distribution.

1 INTRODUCTION

Coherent spontaneous emission (CSE) has attracted much
attention as the electron bunches become shorter and more
intense in current experiments demonstrating the principle
of self-amplified spontaneous emission (SASE). The one-
dimensional (1D) theory of SASE [1, 2] is based on the
solution of the linearized Vlasov-Maxwell equations, for
the cases of a coasting beam with energy spread [1] and
a bunched monochromatic beam [2]. Attempts have been
made to include the energy spread for a bunched beam,
but only coherent bunching at the resonant wavelength was
considered [3]. In Ref. [4], the evolution of the electric
field is studied with the individual particle formulation for
a bunched monochromatic beam, and the contribution of
the incoherent and the coherent SASE are identified. In
this paper, we extend the linear theory to a bunched beam
with energy spread and calculate the effect of CSE for the
high gain FEL. We also present a time-dependent, nonlin-
ear simulation algorithm that takes CSE into account for an
arbitrary beam distribution.

2 COHERENT SPONTANEOUS
EMISSION

The 1D Maxwell equation for the transverse electric field
of a plane wave propagating along the undulator axisz is
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where�0 is the permeability of free space, and the charge
density term is absent here due to transverse uniformity.
Writing the transverse current as~J?(z; t) = ~eJ(z; t) + c.c.,
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with ~e = x̂ (a unit vector in thex direction) for a planar
undulator and~e = x̂� iŷ for a helical undulator, we have
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where� is the beam cross section,K is the undulator
strength parameter for the helical undulator andK[JJ ] for
the planar undulator after averaging over the undulator pe-
riod ku. We have also assumed that thejth electron enters
the undulator att = tj(j = 1; :::; N) andz = 0. Thus, the
longitudinal position of the electron iszj(t) = �c(t � tj),
where�c is the average longitudinal velocity.�(t) is the
step function, i.e.,�(t) = 1 for t > 0 and 0 otherwise.

In the absence of FEL interaction, the electric field in the
form ~E? = ~eE(z; t) + c.c is found to be
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where�1 = ecZ0K=(4�
0), Z0 = c�0 � 377
, and the
forward and the backward wavenumbers are

kf =
ku�

1� �
; kb =

ku�

1 + �
: (4)

Equation (3) describes a sum ofN forward and backward
wave packets, with the forward wave packets having much
higher amplitude and shorter duration due to relativity.

For coherent spontaneous emission, we can define a rel-
ative position� = z � �ct along the bunch and turn the
sum into an integral by using the smooth approximation
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wheren0 is the maximum line density and�(�) is the initial
bunch density function (0 � �(�) � 1). For a single-step
pulse,�(�) = �(��), the electric field in front of the pulse
(0 < � < (1� �)z) is
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h
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i
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Only the forward wave component is present as expected.
The constant term terminates the field at the slippage dis-
tance�s = (1 � �)z. The electric field inside the pulse is
given by

Ec =
�1n0
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1� e�ikb(z+ct)

i
: (7)
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Thus, the coherent radiation comes from the sharp edge at
� = 0 for such a single-step pulse or from any density gra-
dient for a general bunch distribution. A flat-top bunch can
be constructed from two single-step pulses separated by the
bunch lengthlb, and the relative intensity of the incoherent
versus the coherent spontaneous emissions can be obtained
from Eqs. (3) and (6):

Iincoh
Icoh

�
Nk2f
n2
0

=
(kf lb)

2

N
=

1

N

�
2�lb
�r

�2

; (8)

where�r = (1 � �)�u=� is the forward resonant wave-
length. Equation (8) was derived in Ref. [5] by considering
the initial coherent bunching factor. ForN � 1010 and
lb � 2 mm, �r < 120 nm makes the incoherent power
larger, while�r > 120 nm favors the coherent power.
Thus, the CSE effect should be negligible for the proposed
x-ray FEL projects, but may play a significant role in cur-
rent experiments in the IR and visible region. We note that
the flat-top model requires the electron density to vanish
within �r and tends to exaggerate the coherent effect.

3 LINEAR ANALYSIS

For FEL interaction, the backward wave is dropped and the
slowly varying envelope approximation (SVEA) is invoked
in the form

E(z; t) = E(z; t)eikf (z�ct);

J(z; t) = J (z; t)eikf (z�ct); (9)

whereE andJ are assumed to vary slowly withz andt.
The Maxwell equation becomes�
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It is convenient to define the electron coordinate as

� = kf (z � ct) + kuz =
ku
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(z � �ct) � kf � (11)

and change the independent variables from(z; t) to (z; �).
From Eq. (2), the transverse current is
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where�j = �kf ctj . Inserting this into Eq. (10), we repro-
duce the forward wave component of Eq. (3).

The phase space distribution of the electron beam is
given by the Klimontovich distribution [1]
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where� = (
�
0)=
0 is the conjugate variable to�. Equa-
tion (10) can now be written as�
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The Vlasov equation for the electron distribution is [1, 2]
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where�2 = eK=(2
20mc2) is a constant.
In the exponential gain regime and without external field,

we can regard the electric field in Eq. (15) as a small, first-
order quantity. This includes the coherent and the incoher-
ent spontaneous emissions as well as the stimulated emis-
sion. Hence the distribution functionF consists of two
terms: the zeroth-order term is the initial smooth distribu-
tion given by

F0(�; �; z) = �(� � 2ku�z)V (�); (16)

whereV (�) is the initial energy spread of the beam nor-
malized to

R
d�V (�) = 1, and the first-order term�F

contains both the initial fluctuation�F0 and the bunching
behavior through FEL interaction. ApproximatingF with
F0 in the third term of Eq. (15) yields
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where�0 = � � 2ku�z + 2ku�s. Since the FEL gain be-
comes negligible when the width ofV (�) is much larger
than the FEL parameter� [1], where
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we have2ku�z � 2ku�z � 2� in the exponential gain
regime. We can therefore make the approximation�0 � �
in the slowly varyingE andF0 but keep the fast oscillatory
phaseei�0 . Inserting Eqs. (16) and (17) into Eq. (14) and
applying the Laplace transformation, we obtain
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The �-integration is along a straight path parallel to the
real axis and below all singularities of the integrand. It is
nonzero only when� � �j < kuz or � � �j < �s (the slip-
page length). Hence the total electric field at� is the sum
of fields that originated from the discrete radiators prior to
� but within the slippage length. The electron gain medium
is treated as a continuous fluid `a la Vlasov and is justified
in Ref. [4]. For a monochromatic beam withV (�) = Æ(�),
Eq. (19) reproduces the result of Ref. [2]. Coherent SASE
can be evaluated by turning the sum into an integral follow-
ing Eq. (5) and calculating the contribution of the essential
singularity at� = 0 numerically [4].
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Following Ref. [4], one can re-express Eq. (19) as:
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where� is an infinitesimal and positive number,
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and
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For the coasting beam,w(�; �0) = 1 andD(�; �) = 0 is the
dispersion relation including the energy spread [1]. Equa-
tion (21) provides a generalization to the bunched beam.
When the bunch distribution does not change appreciably
over the slippage length,w(�; �j) � �(�) from Eq. (22),
and the FEL gain is affected only by the local electron cur-
rent as expected.

4 SIMULATION ALGORITHM

In order to handle a general beam distribution and to study
the nonlinear regime, we have developed a simulation code
that is based on the individual particle formulation of FEL
equations:
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= ��j ; (23)
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where�z = 2ku�z, �� = �=�, anda = 2��kuE=(�1no)
is the scaled electric field. Equation (25) follows directly
from Eq. (14), where the contribution of the smooth (co-
herent) distribution and the fluctuating (incoherent) part are
explicitly separated into two terms. The partial derivative
with respect to� in Eq. (25) describes the slippage between
the electron and the radiation field.

A time-dependent simulation algorithm [6] can be con-
structed to take into account the slippage effect: one first
divides the bunch intoNb = lb=�r buckets and loads each
bucket with simulation particles that are uniform in� and
have the proper energy spread. Apply Eqs. (23), (24) and
(25) without the slippage term in each bucket, and then slip
the computed field one bucket forward after each undula-
tor period. To start up the FEL process, one either gives a
small initial bunchingb0 [6] or uses the shot noise simula-
tion algorithm of Ref. [7]. However, such a discretization
is not adequate for CSE simulation because the bunch dis-
tribution function�(�) is only sampled with a sampling

Figure 1: Coherent SASE intensityjacj2 versus2�� (� =
1=(40�); �z = 5): (a) without initial energy spread, (b) with
a flat-top energy spread of width�.

interval�r . Thus, the Fourier transform of�(�) is defined
only between the Nyquist critical frequencyfc = c=(2�r)
or !c = ckf=2, and the coherent bunching around the res-
onant frequencyckf is left out.

We modify this time-dependent approach to include the
CSE effect by decreasing the sampling interval to cover
the resonant part of the bunch spectrum. For example, we
can divide the bunch into8Nb sections so that the criti-
cal frequency is4ckf . The spectral power outside this fre-
quency range should be sufficiently small to eliminate the
effect of aliasing. The electric field is computed and aver-
aged over the resonant wavelength, in consistent with the
slowly varying envelope approximation. Compared with
the multi-frequency approach to CSE simulation [8], the
time-dependent approach is more straightforward and can
include the shot noise in a natural way. Figure 1 shows an
example of simulation where we have intentionally turned
the noise off. The bunch is assumed to be longer than the
slippage length. CSE from the trailing part of the bunch
within the slippage length (i.e.,0 < 2�� < �z) has been
amplified and is shown in Fig. 1(a) for a case without ini-
tial energy spread and in Fig. 1(b) for the case with a flat-
top energy spread of width�. Figure 1(a) agrees very well
with the calculation of Eq. (19). Such a simulation tech-
nique is also capable of studying the nonlinear behavior of
the incoherent and the coherent SASE.

5 REFERENCES

[1] K. -J. Kim, Nucl. Instr. Meth. A250, 396 (1986).

[2] J. -M. Wang and L. -H. Yu, Nucl. Instr. Meth. A250, 484
(1986).

[3] K. -J. Kim and S. J. Hahn, Nucl. Instr. Meth. A358, 93
(1995).

[4] S. Krinsky, Phys. Rev. E59, 1171 (1999).

[5] R. Bonifacio, Opt. Comm.138, 99 (1997).

[6] R. Bonifacioet al., Phys. Rev. A40, 4467 (1989).

[7] C. Penman and B. W. J. McNeil, Opt. Comm.90, 82 (1992).

[8] N. Piovella, AIP Conference Proceedings413, 205 (1997).

2497

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999


