“Design, Development and Analysis of a Comprehensive Open Source System for proactive management of security aspects of control networks”

Authored By
S.S. Tomar, S.N. Chaudhari, H.S. Chouhan, V.K. Maurya and A. Rawat

Affiliated to
“Raja Ramanna Centre for Advanced Technology, Indore, Department of Atomic Energy, India”
Discussion outline

- Introduction
- Risk Analysis of DACN
 - Typical Distributed Architecture Control Networks (DACN) - Assets
 - Security Aspects of DACN – Threats & Vulnerabilities
- Secure DACN using FOSS tools
- Enhancing security of Secure DACN
 - Zero day malware attack detection
 - Distributed Component Overheating Management
- Security analysis of secure DACN
- Conclusions
Introduction

- Modern day control networks are
 - Large
 - Connected to Internet
 - Have distributed architecture
 - Contain both control and information cum resource sharing network components
- COTS PCs with Windows OS are widely used
- Windows OS has a long history of malware infections
 - Duqu, Stuxnet and Flame are recent examples
Due to Internet connectivity and use of Windows OS, lot of security issues (CIA)
Proactive and cost effective management of these issues is challenging
A number of FOSS tools exist
Two important issues in distributed n/w
 • Proactive and cost effective management of
 • Zero day malware attacks
 • Distributed Component Overheating
Risk Analysis

- **Risk** = Assets + Threats + Vulnerabilities
- **Assets** = What we are trying to protect
- **Threats** = Against which we are trying to protect
- **Vulnerabilities** = Gaps in our security apparatus
Typical DACN - Assets

- COTS PC, with windows OS
- Ethernet network with wide usage of Quality of Service (QoS) feature
- Modern messaging servers like name, email and web for publishing information
- Data acquisition and control hardware
- Alarm generation system
- Storage system for storing events
- Redundant components for
 - Computation, Decision making, Communication and Data acquisition & Control.
Figure 1: Typical DACN
Security Aspects of DACN – Threats and Vulnerabilities

- COTS PC with Windows OS, has threats from malwares.
- Ethernet technology based networks have CIA issues.
- Internet on a DACN has CIA issues.
- Environmental changes in Distributed locations of the DACN components
- Mail/web/name servers have numerous threats from malwares
Areas for proactive management

- Authentication Authorization Accounting (AAA)
- Firewall and DeMilitarized Zone (DMZ)
- Network Access Control (NAC)
- Network traffic encryption
- Network traffic monitoring
- Virus/SPAM/Malware detection
- Network fabric management (Servers/Routers/Switches/PC /Software)
- Log monitoring and analysis
- Alarm communication management
Secure DACN using FOSS tools
Figure 2: Secure DACN
Sailent Features of the Secure DACN

- Follows multi layered (DMZ) approach
- Follows proxy based Internet access approach
- Filtering of web traffic for virus and SPAM
- AAA of every access to the network
- Reduced Visibility of the resources
- Network traffic encryption
- Network monitoring systems in every DMZ, to detect unusual/ unwanted zero day attack traffic
- Log analysis systems to detect unusual system behaviour
- Abnormal network event related real time multimode alarm generation & comm. system
FOSS tools used for Development

- Linux (CentOS) as OS
- AAA – CentOS Directory Server and FreeRadius
- Firewall and DMZ – IPtables with Bastille and firewall builder
- Network Access Control – PacketFence and Authenticated Squid Proxy server
- Network traffic encryption – OpenVPN and Apache with secure hypertext transfer protocol
Network traffic monitoring – Open Source Security Information Management (OSSIM) with nagios/snort, NfSen plugins

Virus/SPAM mgmt. – Clam AntiVirus (ClamAV) for virus filtering, SpamAssassin for SPAM control on servers. ClamAV and Microsoft Security Essentials on PCs

Network fabric management – OSSIM to monitor host and service availability. Bastille for server hardening and NetDisco for asset discovery
Log Analysis – OSSEC with automated log analysis feature

Alarm communication system – Asterisk for communicating alarms using the telecommunication network, emails using email network, web server for status information display in the form of web pages
Enhancing Security of DACN

- Zero day malware attack detection system
- Distributed Component Overheating management system
Zero day malware attack detection system
Malware are characterized by following:

- Designed to proliferate
- Use Internet/Intranet as channel of communication
- Leave footprints in authenticated proxy logs in the form of excessive TCP_DENIED log lines

- Analyze proxy logs
- Manipulate routing table for blocking access
- Program portals can be used to guide users to check status and unblock access
Use Squid as proxy server for access to public networks from DACN

Authentication and logging options should be enabled in the squid proxy server

All PCs in DACN should be configured to use proxy server for public network access
Design of Complete system

- Consists of three subsystems
 - Malware infected PC detecting and blocking subsystem.
 - User PC status checking subsystem.
 - User controlled PC unblocking subsystem.
Figure 3: Conceptual block diagram of the zero day malware Detection/blocking/unblocking solution

- **Access to Internet**
 - Squid Proxy server
 - Log file
 - Routing Table
 - Scan
 - Has

- **Access to check status**
 - Read
 - Write
 - Check
 - Dummy Routing entry present

- **Access to unblock access to Internet**
 - Subsystem-3
 - After Removal of Dummy routing entry

- **Subsystem-1**
 - count of TCP_DENIED > threshold_rate_limit
 - No
 - Normal access To Internet

- **Subsystem-2**
 - Yes
 - Subsystem-2
 - Display Web Page Blocked = True

- **Subsystem-3**
 - No
 - Display Web Page Blocked = False
 - Display Web Page Blocked = False
User can check present Internet access status.

If blocked, they can unblock system by themselves.

If not blocked,

Administrator can unblock any system by visiting url http://10.11.251.105/view_block_ip.php
http://10.11.251.107/view_block_ip.php

Administrator logs in using username, password.

Selected systems are now included in the network.

If number of Unauthenticated request greater than 300/3 minutes, Temporary Isolation from network.

Displaying list of all such systems.

Normal PC’s internet access.

Authenticated web request

Authenticated web request

Authenticated web request

Authenticated web request

Script running on both proxy server detecting infected system, which are sending large number of unauthenticated web request.

Normal PC’s internet access.

Administrator can unblock any system.

Administrator logs in using username, password.

Selects system to be unblock.

clicking on “ALLOW ACCESS” will unblock their system.

Necessary action:
- Cleaning system with Antivirus software
- Stopping unwanted application.

RRCATinfonet
INTRANET

PCAPAC 6th December 2012, VEC,
Kolkata India
For detecting and blocking, a script in the proxy server is executed using a scheduler at fixed intervals with following algorithm:
Step 1. Define a threshold limit for generated TCP_DENIED requests for a PC/IP.

Step 2. Read the squid access log file for lines containing TCP_DENIED word. Only consider the lines that have got augmented since the last read.

Step 3. Read each line containing TCP_DENIED tag and count the number of such lines generated for each PC/IP.

Step 4. Compare the count of such lines with the threshold rate limit as defined in step 1.

Step 5. If the count of such lines generated by a PC/IP is more than the set threshold limit then mark the PC/IP as malware infected.

Step 6. For IPs listed in step 5, make a non routable entry in the routing table of the proxy server for each of them for blocking their access.
Script `get_rouge_ips.php` running in Proxy server. Entered in Crontab Scheduled to Run in every “X” minutes

Makes Access-log Reading Access-log In every “X” minutes

Contains Info. of every web request, System IP, Username, web page requested, etc.

Search for TCP_DENIED entries in access-log file and Count TCP_DENIED occurrences for every system IP logged in Squid log file

If total number of TCP_DENIED greater than “Y”

E.g. System IP 10.31.2.223 satisfy the rule

YES

Routing table on squid proxy server

<table>
<thead>
<tr>
<th>IP</th>
<th>Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.31.2.223</td>
<td>10.11.1.1</td>
</tr>
</tbody>
</table>

Addition of dummy Gateway to the IP satisfying above rule

Blocking of IP

X = Time interval in Minutes

Y = Blocking threshold limit
User status checking subsystem

- A portal with necessary web pages to publish the status of the user PC/IP.
- This subsystem is residing on another server, configured with a portal/web server, which is accessible to the PCs even when proxy access is not present.
- A script with the following algorithm is used to provide the required functionality:
Step 1. Get the IP details of the PC from where the status check function is being performed.

Step 2. Read the routing table of the proxy server which was modified by the detecting/blocking subsystem.

Step 3. Check for the routing table entry related to the PC/IP from where the status is being checked.

Step 4. If routing table entry for the IP exists then generate a web page showing Blocked = true as the PC status else generate a page with Blocked=false message
File containing blocked IPs

Blocked ips.txt

10.31.2.223,500, john, google.com
10.28.2.223,458, david, orkut.com

If System with these IP, checks their “Internet Access Status” on Intranet. Message like below will appear.

Network Users -> Logs on Intranet

1. If unblocked

INTERNET ACCESS STATUS PAGE

2. If blocked

INTERNET ACCESS STATUS PAGE

Page displays System IP along with the reason for blocking.

PCaPAC-2012, 6th December 2012, VECC, Kolkata India
Extends the functionality of the portal setup with an additional script with the following algorithm:
Step 1. Get the IP of the PC from where the user requested for unblocking.
Step 2. Read the routing table of the proxy server.
Step 3. If the IP related routing entry is present in the proxy server’s routing table then delete it.
Development details

- Linux (Centos 5.7) as the OS
- Scripts written using linux bash, awk, grep and PHP scripting language
- Server side scripting for web pages done using PHP
- Web pages designed using HTML
- Routing table reading/modifications using route command of linux
- CRON scheduler for scheduling
Distributed Component Overheating Management System
Design goals

- To develop a system which can:
 - Continuously monitor the temperature of the switches deployed on network and display it on webpage.
 - Generate automatic phone calls and send emails to concerned persons in case the temperature of a switch exceeds threshold.
 - Perform automatic shutdown of the registered servers when ambient temperature exceeds the shutdown threshold.
Figure 4: Conceptual block diagram of DCOMS
Design of the System

- Desktop application for configuring network switch details registration and storing it in database (XML format)
 - Temperature threshold
 - Contact details (IP, Phone no., email id.)
- Web application for server registration
 - Server shutdown threshold
 - Contact details (IP, Phone no., email id.)
- DCOMS notification generation application with the following algorithm
a. Read the database of registered switches and get IPs of the registered switches.

b. For each switch IP.
 i. Connect to switch using the SNMP client and get SNMP variable value of the temperature variable.
 ii. Read the email-ids and phone numbers associated with the switches.
 iii. Read the shutdown threshold value of the switch
 iv. Read the registered server IPs associated with the switch
 v. If the current temperature exceeds shutdown threshold then
 1. Send shutdown message to the servers
 2. Send email to the concerned persons using the email server
 3. Generate a phone call to the concerned persons using the asterisk server
Automatic server (linux) shutdown is performed using the following algorithm:
Step 1. On the server (one time)
 a. Execute a program/script (register.sh) with the following algorithm:
 i. Create a restricted shell user in the server and copy the root public key of the DCOMS server to its authorized users list.
 ii. Install a script (shutdown_server.sh) with the following algorithm:
 1. Read the message file as sent by DCOMS server.
 2. If the value of shutdown flag is true then initiate shutdown.
 b. Make an entry in cron scheduler to schedule the program for execution in every minute interval
 c. Make an entry in rc.local file to reset the shutdown flag value.
 d. Copy the DCOMS server root public key into the .ssh folder of the restricted shell user.
Step 2. On the DCOMS server (for every switch)
 a. If the current temperature of the associated switch exceeds server shutdown threshold then
 i. Send shutdown message to the servers
 ii. Send email to the concerned persons using the email server
 iii. Generate a phone call to the concerned persons using the asterisk server.

Step 3. On the server (for deregistration, one time)
 a. Delete the cron entry related to shutdown_server.sh script
 b. Delete the rc.local entry for changing the shutdown flag.
 c. Delete the shutdown_server.sh script.
 d. Delete the restricted shell user.
Development of the system

- Linux – CentOS 5.7 as Operating System.
- Apache as web server.
- JAVA for developing desktop GUI, the Switch Threshold Configurator.
- HTML and JavaScript for developing web interfaces.
- XML for storing information in the database.
- CRON for scheduling.
- PHP and BASH scripts.
- *scp* for message passing or copying file to remote hosts (registered servers).
- SNMP for polling switches current temperature.
- Asterisk (FOSS) as telephony system.
- Qmail as MTA on the mail server.
Security Analysis of secure DACN

- Confidentiality controls
- Integrity controls
- Availability controls
Security of Internet connected N/W -Prime requirements

- **Confidentiality**
 - Only intended user can decipher message

- **Integrity**
 - Message not changed during transfer

- **Availability**
 - Service always available 24X7
Confidentiality controls

- AAA infrastructure
- Network access control
- Traffic encryption
- Authenticated Proxy
- Firewalls, DMZ, NAC, NAT provides access control for additional authorization
Integrity controls

- Dual authentication using digital certificate and password in OpenVPN
- HMAC in OpenVPN provides integrity of data at network layer level
- AAA infrastructure supports password expiry, strong password and md5 storage of password for ISO 27001 compliance
- Antivirus and Antimalware systems at all entry and exit points of data
- OSSEC ensures integrity of important configuration files
Availability controls

- Malware detection system ensures higher availability by reducing, spreading of malware and hence DoS
- DCOMS ensures continuous availability of healthy components
- Network monitoring setup using snort, OSSIM, nfSen and nagios ensures failures and security breaches are reported in time
- Alarm generation and communication setup using OSSEC and Asterisk further improves availability
Conclusions

- Achieving foolproof security is challenging.
- Security aspects of such networks is to be managed proactively and cost effectively.
- A number of FOSS tools exist.
- In DACN handling zero day malware attacks and overheating management are to be given importance.
- Proxy log analysis technique for zero day malware detection presented.
- SNMP technique for DCOMS was presented.
Thank You!!