MODULAR BEAM DIAGNOSTICS INSTRUMENT DESIGN FOR CYCLOTRONS

Niraj Chaddha*, R.B.Bhole, Shantanu Sahoo, P.P. Nandy, Sarbajit Pal*
Variable Energy Cyclotron Centre, DAE, 1/AF Bidhannagar, Kolkata-700 064
* e-mail: nchaddha@vecc.gov.in, sarbajitj@vecc.gov.in

- Beam Diagnostic requirements
 - Various beam diagnostic stations with different set of diagnostic components in all the beam regions (internal & external) of K-130 and K-500 Cyclotron.
 - Different types of control & monitoring hardware requirement for each type of component.
 - Requirement of unified hardware with unified control architecture with other subsystems.
 - Parameters: position, intensity, beam profile, visual impression of ion beam, and operational control

- Modular Design Criteria
 - 32 bit ARM based Controller card & µc based functional cards on communication oriented backplane
 - EPICS IOC (Input/Output controller) runs on Linux embedded Controller card and EPICS OPI (Operator Interface) runs on PCs to handle communication and to control & monitor beam diagnostic components
 - Modules are designed with basic functionalities like valve operation, probe/ slit/ viewer control, position read-out, Interlock, aperture control of beam line and communication
 - Individual Serial port for each card for pseudo-parallel operation

- Tools Used (Hardware & Firmware)
 - 32 bit ARM based Controller card (TS-7500) with SD card support for storing Linux operating system
 - ATMEL AVR family and C51 family controllers for functional cards
 - IDEs (Instrument development Environment) like ATMEL Studio-6 and Keil-uVision 4 are used.
 - Serial port programmers and In-Circuit serial programmers are used for Flash programming

- Salient Features
 - Customised instruments are easy to assemble according to requirement
 - Modular design hence easy maintenance & upgradation, minimum downtime
 - EPIC introduction has removed PC dependency
 - Liberty in developing functional cards using any tool and by keeping the same command set
 - Other EPICS oriented features

- Control Architecture
 - A distributed control system (DCS), designed in a 3-layer architecture, monitors and controls all parameters
 - The client-server data communications using channel access protocol of EPICS architecture
 - Defined set of PVs (Process Variables) for each beam diagnostic component operation
 - The IOC (Input-Output controller) on controller card communicated with PCs to controls the diagnostic components and parameters and displayed using EPICS based (OPI) Operator Interface

- Present Status & Future Plans
 - SCC inflector control and RTC X-Y Slit control are operational. Main-probe instrument is under development
 - µC are being planned to be replaced by small FPGAs / CPLD (Complex programmable logic device)

* Presented at: Personal Computer and Particle Accelerator Conference (PCaPAC-2012), December 04-07, 2012, VECC, Kolkata