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Abstract

This work is devoted to finding the integrable systems for
accelerators with strong nonlinear fields. Among all the
solutions there is one with a soliton-like force; one of the
invariants for this system is a quartic in momentum poly-
nomial. Another one is angular momentum, so this system
is related with round beams. Such a field can be made by
solenoidal focusing field, so the soluthion presents an ex-
ample of integrable accelerator with regular nonlinear mo-
tion.

All this shows the relation of general theory of integrable
systems with particular theory of accelerators; it might
initiate applications of Lie groups to equations in partial
derivatives for finding “integrable” lattices of accelerators.

1 INTRODUCTION

In high energy circular aceelerators and storage rings the
betatron motion of particles can be perfectly described by
2D Hamiltonian, whose form corresponds to the usual non-
relativistic motion with a time-dependent force. For such a
case there is no possibility to analyse motion of particles by
analytical formulas because of the stochasticity of trajecto-
ries in phase space. Only the special Hamiltonians give
regular motion. For this we need, for example, 2 commut-
ing integrals of motion.

In this paper it is shown, that system with presented
below Hamiltonian has 2 commuting integral of motion.
HamiltonianH is (for simplicity particle’s mass is equal to
1):

H = p2
x/2 + p2

y/2 + f1(t) · r2/4 + g(r)/4. (1)

wherer =
√

x2 + y2 andf1 satisfies

f ′′′
1 + 8 · f1 · f ′

1 − 3 · h · f1 = 0.

This reminds the equation for a traveling wave solution
f(x − ct) of the Korteweg–de Vries equation:

f ′′′ + f · f ′ − c · f ′ = 0.

After changingf1 to f/8 and3h to c in the equation forf1,
we come to the last one.

Hamiltonian (1) depends only on the radiusr =√
x2 + y2, so one of the integrals is the angular momen-

tum. In the next section we’ll show, how to construct 1D
systems with polynomial in momentum integrals of mo-
tion, and show, that the presented above system has an ad-
ditional quartic in momentum invariant.

2 1D DYNAMICAL SYSTEMS WITH
INVARIANTS, POLYNOMIAL IN MOMENTUM

Further we use the method of finding integrable systems,
proposed by Whittaker [1].

Following [2], we construct here a family of continuous
time-dependent 1D Hamiltonians which have a quadratic
invariant, and thus the respective motion in 1.5D is inte-
grable. Consider a general form of invariant quadratic in
momentump, assuming that the coefficientsA, B, V are
arbitrary functions of timet and coordinatex:

I =
1
2
(Ap − B)2 + V ,

A 6= 0. Equating its total time derivative to zero, we ac-
count for the Hamiltonian equations of motionẋ = p , ṗ =
f , where the unknown forcef depends ont, x

dI

dt
= (Ap − B)

(
Axp2 + (At − Bx)p + Af − Bt

)

+Vxp + Vt ≡ 0 ,

the subscripts here denote the respective partial derivatives.
The vanishing coefficients of each power ofp yield a set of
equations in partial derivatives for the four unknown func-
tions:f is to be found along withA, B, V .

First of all,Ax = 0, andA = A(t) is an arbitrary func-
tion of time. Then we takeAt − Bx = 0, whence:

B(x, t) = Ȧx + A2Ḋ ,

with an arbitraryD(t); dots denote the time derivatives. We
choose here the special form of arbitrary additive function
of time for future convenience.

The last two equations form a set of equations specifying
the unknownsf andV :

A(Af − Bt) + Vx = 0 (2)

−B(Af − Bt) + Vt = 0 (3)

The forcef is thus expressed viaV, B, A:

f = −Vx

A2
+

Bt

A
, (4)

andV is determined by the homogeneous equation in par-
tial derivatives of the 1st order:

B Vx + AVt = 0

Its characteristic curvex(t) is then obtained from the equa-
tion:

dx

dt
=

B

A
=

Ȧx + A2Ḋ

A
.
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Integration gives the lines of constant level ofV :

X ≡ x

A(t)
− D(t) = const .

Hence,

V (x, t) = U
( x

A(t)
− D(t)

)
,

whereU(X) is an arbitrary function.
Thus we conclude, that the general solution to our prob-

lem of integrable system in 1.5D with quadratic invariant
is generated with three arbitrary functions:A(t), D(t), and
U(X). The corresponding forcef is then found from (4):

f = − 1
A3

U ′ +
1
A

(Äx + (A2Ḋ)̇ ) .

The Hamiltonian of this system can be found from the ex-
pression forf :

H(x, p, t) =
p2

2
+

1
A2

U(
x

A
−D)−AÄ

2
(
x

A
)2−(A2Ḋ)̇

x

A
,

and the final form of the desired invariant is:

I =
1
2
(Ap − Ȧx − A2Ḋ)2 + U(

x

A
− D) .

It’s possible to find by this method invariants of arbitrary
order in momentum. It’s shown in [3], that cubic in mo-
mentum invariants and corresponding forces may be found
from linear equations also (like in quadratic in momentum
case).

2.1 Integrable systems for round beams

So now we know, how to construct 1D integrable systems.
What is the difference between a common 1D case and 2D
systems with conservation of the angular momentum? Ac-
tually a 2D system with the angular momentum conser-
vation can be reduced to a 1D system with the ’centrifu-
gal’ forceM2/x3. But the difference is in the condition,
that the second invariant for this system must exist for each
value ofM. ForM = 0 we have a usual 1D system, so the
desired integrable system for round beams gives a common
1D integrable motion, but in general the converse statement
is not true (an additional invariant may exist only for zero
angular momentum, for example). So the family of inte-
grable systems for round beams is less than the family of
common 1D integrable systems.

2.2 Integrable systems with soliton-like forces

Let’s take the simplest quartic polynomial as an invariant:

I = p4 + A(x, t) · p2 + B(x, t) · p + C(x, t);

here we omit the cubic terms at all,A,B,C are unknown
functions. After differentiation of this invariant w.r.t. to
time we should have zero coefficients of each power ofp

(sincedI/dt = 0), so we have the following set of equa-
tions:

4F +
∂A

∂x
= 0

∂A

∂t
+

∂B

∂x
= 0

2 · A · F +
∂B

∂t
+

∂C

∂x
= 0 (5)

BF +
∂C

∂t
= 0,

whereF = ṗ is the force.
Let’s suppose, that we have found some solution of these

equations. Now we want, thatF + M2/x3 be also a solu-
tion of the previous set of equations. From the first line of
(5) we see, thatA has to be transformed intoA+2M2/x2,
andB stays unchanged.1

Let’s eliminate the functionC from the equations. We
can just take the partial derivative of the third equation in
(5) w.r.t. to t, and the partial derivative of the forth one
w.r.t. tox, and subtract one from another. We have:

2
∂(A · F )

∂t
+

∂2B

∂t2
=

∂(B · F )
∂x

.

Let’s put here the newA andF . We have:

2(At ·F +A ·Ft)+4M2/x2 ·Ft +2M2/x3 ·At +Btt =

Bx(F + M2/x3) + B(Fx − 3M2/x4);

hereA,B, F are the old functions independent ofM, sub-
scriptst, x mean partial derivatives w.r.t. tot, x.

We want to get solutions for an arbitrary value of the
angular momentum, so we demand, that each coefficient
at any power ofM should vanish. So, from the previous
equation we obtain two ones (withoutM); adding to them
the first two equations of (5) we have:

4F + Ax = 0
At + Bx = 0

3At · F + 2A · Ft + Btt = B · Fx (6)

4Ft · x2 + 2At · x = Bx · x − 3B.

This is a set of four equations for three unknown functions.
A check for consistency is needed in general, in order to
verify the existence of any solutions.

To eliminate nowF andB, we takeF from the first and
Bx from the second equation and substitute these in the last
one (having taken its time derivative). After that we get an
equation forA:

x2Axxt − xAxt = 0.

All the solutions are:

A = f1(t)x2 + f2(t) + g(x);
1This is not the only way of transformation ofA andB. For example,

A may get a term, which depends on time and momentum. But here we
are looking for the simplest solutions.
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heref1, f2, g are free functions.
After that we have to use one more equation forA,B, F ,

namely the third one in the set (6). At first, let’s expressF
andB using the solution forA. From the first equation of
(6) we have:

4F = −2f1(t) · x − g′(x),

and from the second and last ones we have:

3B = −3(f ′
1(t) · x3 + f ′

2(t) · x) + 2f ′
1(t) · x3.

Let’s putf2 = 0 for saving calculations (the casef2 6= 0
can be treated in the same way, but with more complica-
tions). ThenB = −f ′

1x
3/3.

The third equation of (6) now reads:

−3f ′
1(t)·x2 · 2f1(t) · x + g′(x)

4
−(f1(t)·x2+g(x))f ′

1(x)·x

−f ′′′(t) · x3/3 = f ′
1(t) · x3 · 2f1(t) + g′′(x)

12
.

We rewrite it in a more compact form:

(−8/3 · f1(t)f ′
1(t) − f ′′′

1 (t)/3) · x3 =

f ′
1(t)(3g′(x)x2/4 + g′′(x) · x3/12 + g(x) · x).

Having thus separated the variables, we now have:
1. f1(t) = const, g is an arbitrary function ofx. It’s the
case of the invariant quadratic in momentum; now we have
it squared.
2.

3g′(x)x2/4 + g′′(x) · x3/12 + g(x) · x = −h · x3, (7)

whereh is an arbitrary constant. Forf1(t) we have:

f ′′′
1 + 8 · f1 · f ′

1 − 3 · h · f1 = 0. (8)

This reminds the equation for a traveling wave solution
f(x − ct) of the Korteweg–de Vries equation:

f ′′′ + f · f ′ − c · f ′ = 0.

After changingf1 to f/8 and3h to c in (8), we come to
this equation. Then we can findg from (7). Our force then
is equal to

F (x, t) = −f1(t) · x/2 − g′(x)/4.

So, the presented above method gives an analytical tool
aimed at finding integrable systems for round beams (or,
even for systems with more complicated integrals of mo-
tion, than the angular momentum).
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