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Abstract

Coherent modes which are present when there is no inco-
herent tune spread may be absent when such a spread ex-
ists. Such modes are “Landau damped.” There is instead an
incoherent spectrum, a continuum of an infinite number of
frequencies, which will decohere (filament), thus not lead-
ing to collective instabilities. A stability diagram indicates
when Landau damping will be effective. It divides the ef-
fective impedance plane, or equivalently the plane of coher-
ent frequency in the absence of tune spread, into regions.
The region which contains+i∞ corresponds to instabil-
ity. Thus, one can substitute a simpler computation (find-
ing discrete eigenvalues) for a more complex computation
(solving an eigenvalue system with both a discrete and a
continuous eigenvalue spectrum). We present stability dia-
grams assuming a linear tune shift with amplitude, allowing
tune spread in two transverse planes or in the longitudinal
plane alone. When there is longitudinal tune spread, this
can not be done exactly, and we describe approximations
which make the computation tractable.

1 INTRODUCTION

This paper discusses stability diagrams for Landau damp-
ing in two situations: Landau damping of transverse os-
cillations when there is tune spread with transverse ampli-
tude inbothplanes, and Landau damping of longitudinal or
transverse oscillations when there is tune spread with longi-
tudinal amplitude only, and when the relevant frequencies
in the impedance are small compared to the frequencies in
the bunch. The latter has been described by Wang and oth-
ers [1, 2], however, only for Gaussian distributions. Here,
we treat distributions other than Gaussian, and point out a
caution for the use of these stability diagrams in the trans-
verse case which was not addressed in [2]. These com-
putations require one to ignore azimuthal mode coupling;
however, they do demonstrate how to determine the effects
of tune spread on mode coupling under some conditions.

First, assume that the coordinates in terms of action-
angle variables are

√
2Jαβα(s) cos[θα+∆ψα(s)], and that

the distribution about which one is analyzing perturbations
is of the form

Ψ0(J) = (2π)3
1

εxεyεz
S(Jx/εx, Jy/εy)λ(Jz/εz),

where the integrals of the functionsλ andS are 1, as are
their first moments. Then the following integrals, closely
related to the beam transfer function, appear when perform-
ing a perturbation analysis to obtain the coherent modes

(see, for example, [3]):

−
∫

Jy ∂Ψ0/∂Jy

Ω − ωy(Jx, Jy) −mωz(Jx, Jy)
d3J (1)

∫
J
|m|
z Ψ0(J)

Ω − ωy(Jz) −mωz(Jz)
d3J (2)

−
∫
J
|m|
z ∂Ψ0/∂Jz

Ω −mωz(Jz)
d3J , (3)

where m is the longitudinal azimuthal mode number.
These are for the cases of transversey modes for tune
spread with two-plane transverse amplitude (Eq. (1)), trans-
versey modes for tune spread with longitudinal ampli-
tude (Eq. (2)), and longitudinal modes for tune spread with
longitudinal amplitude (Eq. (3)). There are similar terms
with ωy taking the opposite sign. Equations (2–3) are
only correct under the assumption that the frequency of
the impedance is small compared to the frequencies in the
bunch spectrum. In the more general case these terms will
depend on the frequency of the impedance. Also, Eqs. (1–
2) ignore a term giving the longitudinal force due to the
transverse wake, which is typically small.

If ω(J) is a constantωL (“linear lattice”), then the inte-
grals (1–3) simplify greatly:

1
Ω − ωLy −mωLz

(4)

1
Ω − ωLy −mωLz

∫
J |m|

z Ψ0(J)d3J (5)

− 1
Ω −mωLz

∫
J |m|

z

∂Ψ0

∂Jz
d3J . (6)

When this is the case, the coherent frequenciesΩ can be
found by solving an eigenvalue problem. If one ignores
azimuthal mode coupling, the problem for the nonlinear
lattice can be solved in terms of the problem for the lin-
ear lattice: solve the eigenvalue system to find the value
of the appropriate term from Eqs. (4–6), equate that to the
corresponding term from Eqs. (1–3), and solve for theΩ
appearing in the latter.

Equations (1–3) do not map the complexΩ plane com-
pletely onto itself; there are some points in the complex
plane for which there is noΩ mapped onto that point. This
is because the integrals (1–3) are bounded functions ofΩ;
in other words, for currents/impedances which are suffi-
ciently small, even though there is a solution for the eigen-
value problem for a linear lattice, there is no corresponding
solution for the problem for the nonlinear lattice. Such a
solution is “Landau damped.”
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Figure 1: Example use of a stability diagram. The circles
are the complex tune shifts of the transversem = 1 multi-
bunch modes computed for a linear lattice. The solid line is
the stability diagram. In this case, all the modes are Landau
damped since they all lie below the stability curve.

A stability diagram is simply a “stability curve” drawn in
the plane of the complex coherent tune shifts for the linear
problem which delimits the region for which solutions exist
for the nonlinear problem. Figure 1 demonstrates how a
stability diagram is used.

Formulas and example stability diagrams will be given
here; derivations will be given in a forthcoming paper. Pro-
grams to produce the curves described here can be obtained
from http://wwwslap.cern.ch/collective/jsberg/landau/.

We make the additional assumption that the incoherent
tune, due to forces from magnets and potential well dis-
tortion, is linear in the action:ω = ωL + AJ . A is a
symmetric constant matrix, whose components are given
by Aαβ = aαβ/εβ, where theεβ are the emittances. This
is a good assumption in the transverse planes, but may not
be as good in the longitudinal plane, mainly because of
potential-well distortion.

2 TRANSVERSE TUNE SPREAD

For transverse tune spread only, begin by making a further
assumption thatS(x, y) = ρ(x+ y). The integral (1) is

−
∫ ∞

0

∫ ∞

0

yρ′(x+ y)
∆Ωm⊥ − vxx− vyy

dx dy,

where∆Ωm⊥ = Ω−ωLy −mωLz andvα = ayα +mazα.
This integral can be written in the form

wyf
′(wy) − vx

f(wy) − f(wx)
vy − vx

vy − vx
, for vx 6= vy (7)

− 1
2vy

d

dwy
[w2

yf
′(wy)] for vx = vy

wherewα = vα/∆Ωm⊥, and

f(z) = −
∫ ∞

0

ρ(u) ln(1 − zu) du.

The asymptotic expansion off(z) asz → 0 is z + z2 +
O(z3), making the expansion of the reciprocal of Eq. (7)
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Figure 2: Stability curves for transverse tune spread, when
vy = 5 × 10−5. The thin lines are for the distribution (8),
whereas the thick lines are for (9) (µ = 4.5 for the solid,
µ = 12.5 for the dashed). All lines havevx = −3.58 ×
10−5, except for the thin dashed line, for which it is zero
(one-dimensional).

for ∆Ωm⊥ large∆Ωm⊥− vx−2vy +O(vi/∆Ω2
m⊥). This

asymptotic expansion allows one to compute the effects of
tune spread when the mode one is examining has a coher-
ent tune shift which is large compared to the tune spread. In
such cases, one can compute the mode frequencies to sec-
ond order in the ratio of the tune spread to the tune shift by
replacing all the terms like Eq. (1) with the corresponding
term (4), except thatωLα + aαx + 2aαy is used instead of
ωLα, expressing the fact that the average tune in the bunch
is not the tune at zero amplitude. This allows one to per-
form a mode coupling analysis in cases where both modes
have shifted by amounts large compared to the tune spread.

2.1 Specific Distributions

Consider two distributions

ρ(u) = e−u (8)

ρ(u) =
(µ− 1)(µ− 2)

µ2

(
1 − u

µ

)µ−3

, 0 ≤ u ≤ µ (9)

which correspond to Gaussian and parabolic-like distribu-
tions in one transverse coordinate:

1√
2πσy

e−y2/2σ2
y (10)

1√
2πµσy

Γ(µ)
Γ(µ− 1/2)

(
1 − y2

2µσ2
y

)µ−3/2

. |y| <
√

2µσy

(11)

The distribution (11) gives a good approximation for
a beam which has been collimated at an amplitude√

2µσy . The f(z) for (8) and (9) respectively are
−e−z−1

E1(−z−1) and zF (1, 1;µ; zµ), whereE1 is the
exponential integral, andF is a hypergeometric function
(which for2µ an integer, is expressible in terms of elemen-
tary functions in this case and subsequent cases) [4].

Figure 2 demonstrates that including the tune spread in
both planes can give substantial improvement over the case
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where only one plane is considered. It also demonstrates
that removing the high-amplitude tails from the distribution
can substantially affect the amount of Landau damping one
obtains.

3 LONGITUDINAL TUNE SPREAD

Next, consider Landau damping of either transverse or lon-
gitudinal oscillations due to longitudinal tune spread. In
this case, one computes[∫ ∞

0

u|m|f(u) du
]−1 ∫ ∞

0

u|m|f(u) du
∆Ωm − vzu

, (12)

where the symbols are defined as:

Symbol Transverse Longitudinal
f(u) λ(u) dλ/du
vz ayz +mazz mazz

∆Ωm Ω − ωLy −mωLz Ω −mωLz

and compares the results to1/∆Ωm for the linear lattice.

3.1 Specific Distributions

Expressions can be obtained in the cases whenλ(u) takes
on one of the two forms

e−u (13)

µ− 1
µ

(
1 − u

µ

)µ−2

. (14)

These correspond to distributions in the longitudinal dis-
placement given by Eqs. (10) and (11). For longitudinal
oscillations, (12) is

−1
∆Ωm


z−|m|−1

|m|! e−1/zE1(−1/z) +
|m|∑
k=1

(|m| − k)!
|m|! z−k




1
∆Ωm

F (1, |m| + 1;µ+ |m| − 1;µz)

for the twoλ respectively, wherez = vz/∆Ωm. For the
transverse case, the expression for the exponential distribu-
tion is the same, and for the other one obtainsF (1, |m| +
1;µ+ |m|;µz).

The asymptotic expansion of the reciprocal of (12) for
large∆Ωm is now given by

∆Ωm − vz

∫ ∞
0 u|m|+1f(u) du∫ ∞
0
u|m|f(u) du

+O

(
v2

z

∆Ωm

)
.

The coefficient ofvz is |m| + 1 for (13), andµ(|m| +
1)/(µ + |m|) andµ(|m| + 1)/(µ + |m| − 1) for (14) for
transverse and longitudinal oscillations respectively. An ar-
gument for cases with large tune shifts similar to that which
was made for the transverse case applies here as well.

The stability curves for this case look qualitatively simi-
lar to those for the transverse case with tune spread in only
one plane. However, as|m| increases, the size of the stabil-
ity region increases rapidly (roughly linearly in|m|). Also,
collimating the distribution gives a more drastic reduction
of the stability region than in the transverse case.
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Figure 3: Stability curves for transverse oscillations when
ayz = 0. Vertical lines give the stable region form = +1,
and horizontal lines give the stable region form = −1.

3.2 Other Points of Interest

To make the problem more tractable, it was assumed that
the relevant frequencies in the impedance were small com-
pared to the frequencies in the bunch spectrum. This results
in theJ |m|

z terms in Eqs. (1–6). In the more general case,
this factor is replaced by a function which depends on the
frequency of the impedance. This can significantly reduce
the size of the stability region. Often one considers trans-
verse oscillations withayz = 0. The coherent frequen-
cies one finds are virtually identical for the modes with the
same|m| but different signs ofm. However, the stability
curves are mirror reflections of each other about the imagi-
nary axis. Thus, the modes generally need to be within the
intersection of the two stability regions, as shown in Fig. 3,
often preventing Landau damping due to longitudinal tune
spread when there are large real tune shifts in the transverse
modes.

Combining these facts with the observation that the lon-
gitudinal tune shift with amplitude is often very nonlinear
in action due to potential-well distortion, one should use a
great deal of caution in relying on stability diagram based
models for determining Landau damping due to longitudi-
nal tune spread.
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