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Abstract

The collimation system of LHC will consist of flat colli-
mator jaws distributed along the IR7 lattice with the aim of
limiting the maximum combined amplitudes of secondary
halo particles (born along the edges of the primary col-
limators). The code DJ (Distribution of Jaws) computes
this amplitude using a quasi-analytic algorithm (no track-
ing), by which the maximum initial angles are found, cor-
responding to trajectories escaping all secondary jaws. We
report the latest version of DJ, which contains the following
enhancements: (1) the orientation of each pair of jaws is a
free variable (instead of using only vertical, horizontal, or
45◦ skew jaws); (2) the minimizing method used is “sim-
ulated annealing”, which, for our case of a discontinuous
function of up to 32 variables, always finds a global min-
imum. Different initial jaw distributions lead to different
final ones, but they all give essentially the same maximum
halo amplitude; this seems to depend only on the number of
jaws and the lattice parameters, particularly the tune-split.
We discuss lattice characteristics found favorable for colli-
mation.

1 INTRODUCTION

The betatron beam collimation system for the LHC will be
installed in the IR7 insertion. It will consist of a set of
primary collimators, followed by a number of secondary
collimators arranged to limit the so-called secondary beam
halo produced at the edges of the primaries, thereby pro-
tecting the LHC vacuum chamber from scattered particles.
Each collimator will be composed of a pair of opposing flat
jaws.

In [1] we presented the computer code DJ, which dis-
tributes secondary jaws along the IR7 lattice with the aim
of minimizing the largest surviving combined amplitude of
the halo. We now report some enhancements to DJ and the
improved results which they have made possible.

2 DEVELOPMENT OF THE MODEL

2.1 Varying the jaw angles

In the code DJ, the production of halo particles is modeled
by a set of point-like sources distributed along the borders
of the primary jaws (straight lines in the transverse plane).
The secondary jaws, assumed to act as black absorbers, are
defined by their horizontal tune advanceµx (within the col-
limation section IR7) and their rotation angleα around the

∗Also at Dept. of Physics & Astronomy, UBC, Vancouver, Canada.

longitudinal axis.
For a given jaw distribution, a mapping technique is

used to isolate the fraction of trajectories escaping all sec-
ondary jaws, i.e. those passing between the two oppos-
ing jaws of all pairs. For these uncaptured halo particles,
the code finds the maximum combinedx-y betatron ampli-
tude Amax , whereA = (A2

x + A2
y)1/2 andAx,Ay are

the single-plane transverse invariants. This computation
is fast (∼1 s) as no tracking is needed. DJ further mini-
mizes Amax as a function of the jaw distribution vector
(µx1, µx2..., µxN , α1, α2..., αN ).

In [1] four types of jaws are used – vertical, horizontal
and two skew – with rotation anglesα = 0◦, 90◦, 45◦,
135◦ respectively. In the new version of the code DJ, the
angleα is an independent variable, along with the jaw po-
sition, and may range over0◦ ≤ α ≤ 180◦; during min-
imization the jaw positions and angles are varied together.
The improvement inAmax (expressed in terms of the r.m.s.
amplitudeσ) is shown in Table 1, for primary and sec-
ondary collimators set at 6σ and 7σ respectively. For 12
secondary collimators, allowingα to vary has the same ef-
fect as adding 4 more secondaries; for 16 secondaries the
improvement is less dramatic.

Table 1:
Number of Amax Amax

secondary pairs discreteα = 0◦ ≤ α ≤ 180◦

of jaws 0◦, 90◦, 45◦, 135◦

12 9.4σ 8.7σ
16 8.6σ 8.4σ

With variable angles, the program module calculating
Amax for a fixed jaw distribution remains unchanged.
However, the minimization ofAmax with twice as many
variables called for some new numerical tools and solu-
tions.

2.2 Minimization

During minimization, the locations of the four primary jaws
are fixed at maxima of the corresponding beta functions,
their angles being:0◦, 90◦, 45◦ and135◦.

The optimization process has been developed in two
stages: 1) conventional methods, which allow better in-
sight, but show an unwelcome dependence on the initial
conditions, with some runs ending up in local minima, and
2) simulated annealing.

Amax is not a smooth function of the jaw-distribution
vector, because of screening effects by some secondary
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jaws on others. A step offinite length made in any direc-
tion of the 2N -coordinate space may result in unpredictable
changes in the indicesm,n of the two maximum ampli-
tude jaws[1] and correspondingly inAmax . However,
for small enough increments, the coordinates of the two
maximum-amplitude jaws are the only ones whose vari-
ables affectAmax , so there are only four active variables
µm, αm, µn, αn (local smoothness).

Downhill-overstep methods[2] are based on the local
smoothness ofAmax . At each iteration, the LMDIF pack-
age routine is used with four variables up to the limits of
the smoothness interval. After that, a step is made outside
this interval, to pick a new pair of active jaws. The step is
halved after each unsuccessful iteration (no downhill direc-
tion found).

Simulated annealing (SA)– a probabilistic optimization
method [3], is a recent technique devised for solving diffi-
cult problems involving discontinuous multi-variable func-
tions, but requiring large computing time. The Appendix
offers a quick overview of SA in one dimension.

At early stages of minimization, if the percentage of
accepted cases rises, then the range over which the code
searches for an optimum increases, i.e. the SA algorithm
keeps more than one local minimum in sight. As the “tem-
perature” parameter is reduced, downhill moves are less
likely to be accepted, more cases are rejected and SA fo-
cuses on the global extremum.

In several initial runs, appropriate values were chosen
for the most important SA parameters – the initial tempera-
ture (T0 = 5) and the temperature reduction factor (0.6). A
typical SA run assumed fixed IR7 lattice functions, a suf-
ficiently large number of source points along the edges of
the four primary collimators, and 12 to 16 secondary colli-
mators.

With these parameters fixed, SA runs made for ran-
dom initial jaw distributions always resulted in essen-
tially the same minimum value forAmax , as desired.
The final jaw distributions, however, were by no means
identical, although many were very similar (see§3.2 be-
low). The secondary-halo cross-sections differed corre-
spondingly, having different maximum single-plane invari-
ants Axmax and Aymax (but the same amplitude near the
diagonal in(Ax, Ay) space).

If DJ is modified to search only for jaw locations com-
patible with the rest of the hardware, then the computing
time increases unacceptably. The alternative approach was
taken of shifting the quadrupoles slightly to free locations
at which jaws were needed.

3 RESULTS

Different IR7 tunes were explored for several recent ver-
sions of the LHC lattice, and for 16 secondary collimators
Amax was found to be between 8.4σ and 9.1σ, depending
on the lattice setting.

Figure 1: IR7 lattice and tune-split functions for LHC ver-
sion 4.2, with IR7 quadrupoles tuned for high negative tune
split, giving Amax = 9.1σ.

3.1 Optimum lattice setting

Optics criteria can be formulated in terms ofµx(s) and
µy(s) – the horizontal and vertical tune advances along the
straight section, withµx(s0) = µy(s0) = 0 at the first
primary collimator (s0 = 290 m), or equally, in terms of
the functionsµ± = (µy ± µx)/2. The average tune ad-
vanceµ+ is roughly proportional to the distance from the
first primary: µ+ ∝ s − s0. Therefore, for a fixed
length of the collimation section, the collimation quality
can essentially be expressed in terms of the totalµ+ and
the tune-split functionµ−(s).

The advantage of having the tune split vary along the
beamline was first suggested, and confirmed by tracking,
by Risselada [4]. For the case of circular collimators, ini-
tial studies have been carried out [5], aiming to explain the
relation between the shape ofµ−(s) and the collimation
quality, and a search for a rigorous theory is under way.

As reported in [1], larger oscillations inµ−(s) give lower
Amax , but we have also found dependence on the sign of
µ−. The figures below show the lattice and tune-split func-
tions of IR7 for two cases recently studied: a tune giving
large negativeµ− and Amax = 9.1σ (Fig. 1), and a tune
giving large positiveµ− and Amax = 8.45σ (Fig. 2). The
following tune-split variation gaveAmax < 8.5σ:

- almost everywhere positive and close to periodic, with
three nearly equal maxima∼ 0.2 each (Fig. 2, bottom);

- one high peak in the middle∼ 0.25 (an abandoned
lattice version, not shown).

On the other hand, a tune giving two large negative peaks
in µ− (Figure 1, bottom), gives a somewhat higherAmax

= 9.1σ.

3.2 Optimum collimator phases

For a lattice optimized purely for collimation, some rela-
tion is to be expected between the horizontal and vertical
betatron phases of perfectly located collimators. Even in
realistic lattices, constrained by additional factors, the SA
runs showed that this remains true, favouring certain jaw
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Figure 2: IR7 lattice and tune-split functions for LHC ver-
sion 4.2, with the IR7 quadrupoles tuned for high positive
tune split, givingAmax = 8.45σ.

locations. We also found thatµ+ is a more relevant inde-
pendent variable thans.

Fifty SA runs were performed for nearly optimum con-
ditions(Amax = 8.45σ) using the lattice shown in Fig. 2.
Each run used a randomly generated initial jaw distribu-
tion, i.e. random angles and phases for 16 collimators. The
values ofα were then plotted againstµ+ (Fig. 3) for the re-
sultant 50 jaw distributions, which all give nearly the same
value ofAmax: 8.4σ < Amax < 8.5σ. The jaw loca-
tions tend to cluster near the extreme values of the function
µ−(µ+). On the other hand, for the lattice withAmax =
9.1σ the pattern is more chaotic (Fig. 4).

Figure 3: Collimator distributions from 50 SA runs for the
lattice shown in Fig. 2 (Amax = 8.45σ) using 16 pairs of
secondary jaws with random initial settings. Each point
represents the rotation angle and the average betatronic
phaseµ+ of one pair.

4 APPENDIX: EXAMPLE OF SIMULATED
ANNEALING ALGORITHM IN ONE

DIMENSION

In this example, the global minimum ofF (x) is searched
for, within some interval(x1, x2). The user supplies initial

Figure 4: Collimator distributions for the lattice shown in
Fig. 1 (Amax = 9.1σ).

values forx (x1 < x < x2), the stepdx and the tempera-
ture parameterT (T > |x1 − x2|).

At each iteration, 20 trial valuesxtri are generated ran-
domly in the interval(x − dx, x + dx). If a trial value
xtri is downhill, i.e. F (xtri) < F (x), then it is accepted
and, if F (xtri) is lower than its previously lowest value,
xtri is recorded as a new optimum. An uphillxtri can
also be accepted with probabilityP = e(F (x)−F (xtri))/T

(Metropolis criterion). If the trialxtri is out of bounds, then
it is rejected and simply a newxtri is generated in bounds.
Each time the trial is accepted,xtri replacesx (the centre
x moves, butdx stays). At the end of the iteration,dx is
scaled to some new length, which would have produced a
roughly equal number of rejected and accepted trials; for
instance,dx is increased if too many cases have been ac-
cepted.

The temperature is reduced by a factor 0.6 after each
5 iterations. The process is halted if the optimum found
remains unchanged during several subsequent temperature
cycles.
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