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Abstract

We describe the technique of longitudinal beam transfer
function (BTF) for measuring several properties of longi-
tudinal oscillations in a electron storage ring such as the
synchrotron frequency, radiation damping time, and bunch
length. The technique takes advantage of the Gaussian
distribution of longitudinal oscillation amplitudes within
the bunch at very low current and the dependence of syn-
chrotron frequency on amplitude. Results of measurements
made at the Advanced Light Source (ALS) are presented.

1 INTRODUCTION

Beam transfer function (BTF) diagnostics are used in al-
most all storage rings for measuring the betatron and
synchtrotron frequencies. In the simplest case, a swept
frequency drive excites either betatron or synchrotron os-
cillations while a beam signal is observed on a spectrum
analyzer. In other applications, BTF techniques have been
used[1, 2, 3] for measuring beam impedance and feedback
loop stability. We describe in this paper an application of
the BTF technique for use in an electron storage ring for
making measurements of the distribution of synchrotron
frequencies within a single bunch at low beam current. By
taking advantage of the Gaussian distribution in the en-
ergy spread within the bunch resulting from the quantum
nature of the emission of synchrotron radiation and the si-
nusoidal RF voltage, we can use the measurements to de-
rive a relatively precise measure of the nominal synchrotron
frequency, the longitudinal radiation damping rate, and the
bunch length. Although these parameters can be measured
using other techniques, the BTF method has the advantage
of being relatively simple and inexpensive, and typically
uses equipment that is either already available in the control
room or easily assembled. The BTF technique can poten-
tially be used to study the effects of short range wakefields
and the longitudinal beam dynamics of more complicated
situations such as double RF systems and low momentum
compaction.

In general, the BTF is defined as the ratio of the driven
beam response to the external excitation at a given fre-
quency. In practice, either an network or FFT analyzer is
used to supply a swept frequency or noise excitation to the
beam via either a stripline kicker or RF cavity and the beam
response is measured through a pickup. For the cases dis-
cussed in this paper, we excite longitudinal oscillations by
phase modulating the voltage in the fundamental mode of
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an RF cavity and measure the synchrotron oscillations by
detecting the phase of a beam pickup signal relative to a
fixed reference phase or by measuring energy oscillations
at a point of dispersion in the lattice. It is also assumed
throughout the paper that the amplitude of synchrotron os-
cillations is small enough that the motion can be described
as linear.

Section 2 discusses the longitudinal beam distribution
and gives a physical interpretation of the transfer function
for a Gaussian distribution. Section 3 presents the measure-
ments performed at the ALS.

2 BEAM TRANSFER FUNCTION FOR A
GAUSSIAN DISTRIBUTION

The energy distribution in an electron bunch in a storage
ring is Gaussian, resulting from the balance of the quan-
tum excitation from synchrotron radiation emission and ra-
diation damping[4]. It can be shown that the phase space
density distribution to second order is given by

ψ0(τ̂) =
1

2πσ2
τ

e−(τ̂2/2σ2
τ ) (1)

where τ̂ is the oscillation amplitude andστ is the RMS
bunch length, both in units of time. The nonlinearity of the
sinusoidal RF voltage results in a synchrotron frequency
dependent of the amplitude of phase oscillation of the form

ωs(τ̂) = ωs0(1 − µτ̂2) (2)

where

µ =
ω2

RF (1 + 5
3 tan2φs)

16
≈ ω2

RF

16
(3)

whereφs is the synchronous phase angle. For most cases,
the effect ofφs can be ignored.

The combination of the distribution of oscillation am-
plitudes and synchrotron frequency as a function of ampli-
tude yields a unique distribution of synchrotron frequencies
within the bunch for a given bunch length. As described
below, the natural spread in frequencies leads to Landau
damping of coherent oscillations.

Given the distribution, the BTF can be found by solving
the Vlasov equation for a small perturbation of the phase
space distribution at the excitation frequency and integrat-
ing to find the first moment of the distribution. This ap-
proach is identical to that used in finding the stability con-
ditions of coherent instabilities. Equivalently, the BTF can
be found by calculating moments of the distribution in re-
sponse to an impulse excitation in the time domain and
making a Fourier transform on the result. The time domain
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Figure 1: Calculated BTF for a 1 cm RMS bunch length as
a function of increasing radiation damping.

impulse response has been calculated[5] and can be shown
to give the same result as the Vlasov approach for infinites-
imal excitation. The BTF can be expressed in terms of a
dispersion integral given by[6]

I(ωm) ∝
∫ ∞

0

τ̂2dτ̂

ωm − ωs(τ̂)
∂ψ0

∂τ̂
. (4)

whereωm is the angular modulation frequency. Radiation
damping is included by making the synchrotron frequency
complex as given by

ω̃s = ωs + jλrad (5)

For a Gaussian distribution in oscillation amplitude, the
dispersion can be expressed in terms of the exponential
integral[7], given by

I(x) ∝ 1 − xE1(x)e−x (6)

wherex = 8(ωs0−ω−λrad)
ωs0ω2

rf
σ2

τ
.

The amplitude and phase of the BTF is plotted for several
values of the bunch length as a function of increasing radi-
ation damping in Figures 1a-d. For convenience, we have
used the convention that the phase goes from 180 to 0 de-
grees passing from far below the nominal synchrotron fre-
quency to above. Consider the case of no radiation damp-
ing (λrad = 0) shown in Figure 1a. When the external ex-
citation frequency is greater than the zero–amplitude syn-
chrotron frequency, the phase of the beam response does

Figure 2: General setup for longitudinal BTF measure-
ments.

not vary with frequency because all of the electrons within
the bunch are being driven above their resonant frequency.
Whenωm < ωs0 and the external excitation frequency is
within the spread of incoherent frequencies, some of the
particles in the bunch are being driven resonantly, some be-
low resonance, and some above resonance and thus there
is a net phase shift between the drive and the response.
When the external excitation frequency is far below the
synchrotron frequency, all electrons have again the same
phase response. Neither the amplitude and phase response
are symmetric in frequency because the distribution of syn-
chrotron frequencies with oscillation amplitude is not sym-
metric. Also note that the peak amplitude response does
not occur at the nominal synchrotron frequency but slightly
below.

For nonzero radiation damping as shown in Figures 1b-
d, the response of individual electrons now have a natural
width. This tends to smear the response of the distribu-
tion of synchrotron frequencies. As the width due to ra-
diation damping approaches the width of the distribution
of synchrotron frequencies, the response becomes much
more like the Lorentzian shape expected from a damped
harmonic oscillator.

3 BEAM MEASUREMENTS

The setup for measurement of the BTF is shown in Fig-
ure 2. We excited longitudinal oscillations by phase modu-
lating (PM) the RF voltage. This was achieved by injecting
the modulation signal as an error signal in the RF phase
control feedback loop.

Synchrotron oscillations were detected using the phase
detector for an existing longitudinal coupled–bunch feed-
back system[8]. This detector passes the sum of the signal
from four capacitive button BPMs (beam position moni-
tors) located at one point in the ring through a 4–tap comb
filter with a center frequency of 3 GHz (6×Frf ). The sum
of the four button signals is not sensitive to the transverse
position of the beam. The signal is demodulated to base-
band through a double balanced mixer using a 3 GHz local
oscillator derived from the 500 MHz master oscillator. De-
tection at the sixth RF harmonic increases the sensitivity

770



to phase oscillations compared to detection at the RF fre-
quency and is also near the frequency of maximum pickup
impedance of the BPMs. Because of the relatively short
bunch length in the ALS, the 3 GHz component of the beam
signal is reduced very little compared to the 500 MHz com-
ponent.

The sensitivity required for the detection of the syn-
chrotron oscillations depends somewhat on the storage ring
parameters. For example, to obtain the most accurate re-
sults, we found that it was important to excite the syn-
chrotron oscillations with an amplitude at least two orders
of magnitude less than the natural bunch length in order that
the oscillations remained quasilinear. Therefore, measure-
ments with shorter bunch length require greater sensitivity.
We indepently verified the amplitude of PM in the cavity
by measuring the spectrum of PM sidebands present on a
cavity probe signal with no beam. Also, to avoid conver-
sion of PM to amplitude modulation, the frequency of the
RF cavity was tuned to on resonance with the RF drive fre-
quency for all measurements. For the conditions of these
measurements, the variation of the cavity response over the
bandwidth of the measurement was negligible.

An HP89410 FFT signal analyzer was used as the source
and receiver for the signal for both measurements. We
found that for a given level of excitation, a better sig-
nal/noise ratio could be achieved using a bandwidth lim-
ited noise source than for a swept frequency excitation. In
principle both approaches yield the same results. In or-
der to avoid the influence of collective effects on the bunch
shape, all of the measurements presented here were made
at the lowest single bunch current possible which still gave
a reasonable signal level. We used a bunch current of 100-
300µA, well below the threshold for any instabilities and
low enough that potential well distortion is negligible.

Shown in Figure 3 are BTFs measured at various beam
energies and synchrotron frequencies. Each result is fit to
the functional form given in Eq.6. The width of the am-
plitude response is due in roughly equal parts to the radi-
ation damping and the spread of synchrotron frequencies
and thus the BTF is much more symmetric. We indepen-
dently measured the bunch length with a streak camera with
values shown in parentheses in the figure for comparison.
Although the agreement for the values of the bunch length
is good, it is less precise for the case when the decoherence
rate and the radiation damping rate are comparable. If the
interest is in measuring bunch length, the BTF technique
would be limited to relatively long bunches.

4 CONCLUSIONS

The BTF is a relatively simple method for measuring
the incoherent spread in synchrotron frequencies in a sin-
gle bunch. With a careful analysis, the small amplitude
synchrotron frequency, the longitudinal radiation damping
rate, and the bunch length can all be inferred from this
measurement. The precision of the measurement depends
primarily of the value of the radiation damping rate com-
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Figure 3: Results of BTF measurements at ALS for sev-
eral energies and nominal bunch lengths. The fit values for
the synchrotron frequency, bunch length, and damping rate
are shown for each case. Bunch lengths measured using a
streak camera are shown in parentheses for comparison.

pared with the incoherent spread in synchrotron frequen-
cies. The measurement of the bunch length is more precise
whenλrad < ∆ωs and vice versa for measurement of the
radiation damping time.

We are hopeful that this technique can be used for mea-
suring the effects of distortions of the phase space distribu-
tion due to instabilities or other effects. We would like to
thank the the ALS operations group for assistance with the
measurements.
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