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Abstract

The analytical expression for the magnetic field of helical
coils is presented.  In particular, the multipole coefficients
are introduced for helical dipole magnets, which are
essential components of Siberian Snakes and spin rotators
for polarized proton acceleration at RHIC.   In addition,
the comparison between analytical and numerical
calculations is presented for simple helical dipole
magnets.

1  INTRODUCTION

Using the expression of multipole expansion  for a single
helical current conductor[1], the magnetic field of helical
dipole coil with an infinite length is derived as the
summation of four(4) helical line currents with dipole
symmetry, deriving the helical multipole coefficients.
[2,3]  The helical multipole coefficients are defined so that
the non-twist helical multipole coefficients are equal to
the 2-dimensional multipole coefficients.  As a result, the
dependence of helical multipole coefficients upon the
twist parameter is derived.  With the comparison between
the analytical and numerical calculations, it is confirmed
that the helical multipole coefficients derived from the
analytically calculated field are consistent with those
calculated numerically.

2  ANALYTICAL EXPRESSION FOR THE
MAGNETIC FIELD OF HELICAL DIPOLES

Using the expression of the multipole expansion for a
single helical current conductor, the magnetic field inside
the helical coils with an infinite length can be derived as
the summation of four(4) helical line currents with dipole
symmetry as follows, [1,2,3]
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Therefore, the normal and skew multipoles due to many
helical line currents with current Ii, radius ai, angle ϕi are,

Bn(k) = Bref(k) bn(k) = - µ0

π  1
2n(n-1)! r0

 (n k r0)
n ×

Ii k ai Kn-1(n k ai) + Kn(n k ai)  cos nϕ i∑
i

An(k) = Bref(k) an(k) = - µ0

π  1
2n(n-1)! r0

 (n k r0)
n ×

Ii k ai Kn-1(n k ai) + Kn(n k ai)  sin nϕ i∑
i

     (3)

where k = 2π/L, and In(nkr) and Kn(nkr) are the modified

Bessel functions of the first and second kind of order n,
respectively.  With the definition of b1(k) =1 (=constant),

naturally Bref(k) = B1(k).  Then, the asymptotic forms for

the reference field Bref(k) and for these helical multipole

coefficients an(k) and bn(k) are given in the limit k → 0
(or L → ∞) by,

limk→0 Bref  (k)  = Bref

limk→0 an (k)  = an

limk→0 bn (k)  = bn

                                         (4)

3  COMPARISON BETWEEN ANALYTICAL AND
NUMERICAL CALCULATIONS

3.1  Calculation for four helical line currents

Following numerical values are assumed in the
calculation for four helical line currents with dipole
symmetry.

Radius of helical line current: a = 50 mm,
Angle of helical line current: ϕ = ±π/6, or ±5π/6,

Current: I = - 1 × 105 A,  
Pitch length: L = 2 m,
k = 2π/L = 1/(a tanα) = π,
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Pitch of the winding: α= tan-1(1/0.05 π),
Reference radius for multipole: r0 = 30 mm,

as shown in Fig.1.  Both of the numerical and analytical
calculations for the helical dipoles with the infinite
length, are made, using Mathematica [4]. Both calculated
helical multipole coefficients are listed in Table 1.  The

bn-theta and bn(k) correspond to the normal multiple

coefficients derived from the angular component of
numerically calculated field Bθ and analytically calculated

helical coefficients, respectively.  The analytically
calculated contour plot of the dipole field By (r, θ, z=0) is

shown in Fig.2.  Both analytical (gray line) and numerical
(black dots) calculations for the dipole field By (r=30 mm,

θ, z=0) are also shown in Fig.3.  As a result, it is
confirmed that the agreement between the analytical and
numerical calculations is quite good in the interior region
of helical coils.  The twist dependence of the dipole field
Bref is also shown in Fig.4.

3.2  Calculation for four helical current shells

Similarly, the magnetic fields are calculated for a four
helical current shells with dipole symmetry of current
density ±jz, radii a1, a2, limiting angles ±ϕ1, ±ϕ2, with,

Inner radius of helical line current: a1 = 50 mm,

Outer radius of helical line current: a2 = 60 mm,

Inner angle of helical line current: ϕ1 = 0, or π,

Outer angle of helical line current:  ϕ2 = π/3, or 2π/3,

Coil length: L = 2 m,

      
     Fig. 1. 3D view of a four currents’ helical dipole.
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              Fig. 2. Contour plot of dipole field By.    Table 1. Normal multipole coefficients for a infinitely
                long four line currents' helical dipole.

 

   n        Pole        bn-theta       bn(k)

   (Bref)               1.411          1.411

   1        dipole      0.9998         1.

                                 -10
   3        sextupole   -2.859 10      0

   5        decapole    -0.1239        -0.1243

   7        14-pole     -0.04386       -0.04419

                                 -10
   9        18-pole     -1.721 10      0
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  Fig. 3. Distribution By on the circle of r = 30 mm,

      with the comparison between the numerical (black
      dots) and analytical (gray line) calculations.
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        Fig. 4. Twist dependence of the dipole field Bref.
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Current: I = - 2 × 105 A,

Current density: jz = 347 A/mm2

k = 2π/L = 1/(a tanα) = π,

Pitch of the winding: α = tan-1(1/0.05 π),
Reference radius for multipole: r0 = 30 mm,

as shown in Fig.5.  The numerical calculation for the
helical coil with the finite length of one period is made,
using the code 'OPERA-3d'. [5]  Both analytical (gray
line) and numerical (black dots) calculations for the dipole
field By (r=30 mm, θ, z=0) is shown in Fig.6.  The 3D

plot of the analytically calculated dipole field By (r, θ,

z=0) is shown in Fig.7.  Both of the analytically and
numerically calculated helical multipole coefficients are
also listed in Table 2.  In addition, this analytical method
was applied for two helical magnet of different type.
[6,7,8]

4  CONCLUSION

As an extension of single helical current conductor, the
magnetic fields of helical dipole magnet are derived and
helical multipole coefficients are presented.  In addition, it
was confirmed that this analytical calculation is consistent
with the numerical calculation by the 3D magnetic field
numerical code, OPERA-3d/TOSCA

5  ACKNOWLEDGMENTS

The authors are indebted for helpful discussions and
comments to the  RIKEN RHIC spin accelerator group.

REFERENCES

[1] T. Tominaka et al., "Multipole Expansion for a Single
Helical Current Conductor", in this proceedings.

[2] T. Tominaka, "Multipole Expansion for a Single Helical
Current Conductor", AGS/RHIC/SN No.49, December
18, (1996).

[3] T. Tominaka, "Magnetic Field Calculation of Helical
Dipole Coils", AGS/RHIC/SN No.24, April 29, (1996).

[4] Stephen Wolfram, "Mathematica, A system for Doing
Mathematics by Computer", Addison-Wesley Publishing
Company, Inc., (1991).

[5] Vector Fields Limited, Oxford, England.
[6] T. Tominaka, "Analytical Field Calculation of the

Slotted Helical Dipole", AGS/RHIC/SN No.47,
November 12, (1996).

[7] T. Tominaka, "Analytical Field Calculation of the Direct
Wind Helical Dipole", AGS/RHIC/SN No.48, December
18, (1996).

 T. Tominaka, " Relation between Field Homogeneity and
Multipole Coefficients for a Helical Dipole",
AGS/RHIC/SN No.54, April 25, (1997).

 
  Fig.5. 3D view of a four helical current shells’ dipole.

Table 2. Normal multipole coefficients for a 2 m long,
            4 helical current shells’ dipole.

   n        Pole        bn-theta      bn(k)

   (Bref)               2.463         2.456

   1        dipole      1.            1.

                                 -6           -17
   3        sextupole   -1.001 10     1.369 10

   5        decapole    -0.01727      -0.01734

   7        14-pole     0.003718      0.003743

                                 -6           -19
   9        18-pole     -3.246 10     3.775 10
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Fig. 6. Distribution of By on the circle of r = 30 mm.
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             Fig. 7. 3D plot of dipole field By.
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