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Abstract

The paper presents some analytical results of the theory of
coherent synchrotron radiation (CSR) describing the case
of finite curved track length.

1 INTRODUCTION

Analysis of project parameters of linear colliders [1, 2]
and short-wavelength FELs [1, 3, 4] shows that the ef-
fects of coherent synchrotron radiation of short electron
bunches passing bending magnets influence significantly
on the beam dynamics (see, e.g., [5, 6]). The first inves-
tigations in the theory of coherent synchrotron have been
performed about fifty years ago [7, 8, 9]. In these papers
the main emphasis was put on the calculations in far zone
of CSR produced by a bunch of relativistic electrons mov-
ing on a circular orbit. Another part of the problem, namely
that of the radiative interaction of the electrons inside a
bunch has been studied for the first time in refs. [10, 11]
and later in refs. [5, 12] where the energy loss along the
bunch has been calculated. The results of the above men-
tioned CSR theories are valid for a model situation of the
motion of an electron bunch on a circular orbit and do not
describe the case of an isolated bending magnet. The first
analytical results describing this case have been presented
in ref. [13]. In particular, analytical expressions have been
obtained for the radiative interaction force, for the energy
loss distribution along the bunch and for the total energy
loss of the bunch. The criterium for the applicability region
of the previous theories to the case of a finite magnet length
has been derived. In this report some analytical results of
ref. [13] are presented.

2 RESULTS FOR A RECTANGULAR BUNCH

Let us consider a rectangular bunch of the lengthlb passing
a magnet with the bending angleφm and the bending radius
R. We use the model of ultrarelativistic electron bunch with
a linear distribution of the charge (zero transverse dimen-
sions) and assume the bending angle to be small,φm � 1.
We neglect the interaction of the bunch with the chamber
walls assuming the electrons to move in free space. The
total number of particles in the bunch is equal toN and the
linear density is equal toλ = N/lb.

When the electron bunch passes the magnet, the electro-
magnetic field slips over the electrons due to the curvature
and the difference between the electron’s velocity and ve-
locity of light c. The slippage lengthLsl is given by the

expression:

Lsl ' Rφm

2γ2
+

Rφ3
m

24
, (1)

whereγ is relativistic factor. When applying the results of
steady-state CSR theory (periodical circular motion) to the
case of isolated magnet it is assumed usually that the bunch
length is much shorter than the slippage length. To obtain
more correct criterium for the applicability region one has
to develop more general theory including transient effects
when the bunch enters and leaves the magnet. Such an in-
vestigation has been performed in ref. [13]. In particular, it
has been stressed that the radiation formation length of the
order of lbγ2 before and after magnet plays an important
role in CSR effects. In practically important case when the
conditionsγφm � 1 andR/γ3 � lb < Lsl are satisfied,
the expression for the total energy loss of the bunch can be
written in the following form [13]:
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wheree is the charge of the particle and

C = 2 ln 2 − 1
2

ln 3 − 11
2

' −4 .

The first term in eq. (2) is the solution obtained in the
framework of steady-state approach (see, e.g., refs. [9, 11,
5]). Therefore, with logarithmical accuracy we can set the
applicability region of the results of the steady-state theory
for the case of a finite curved track length:

l
1/3
b

R1/3φm
ln
(

lbγ
3

R

)
� 1 . (3)

In particular, the steady-state theory provides completely
incorrect results for the case of the electron bunch much
longer than the slippage length,lb � Lsl. In this case
the energy losses of the particles in the bunch due to
CSR are proportional to the local linear density and take
place mainly after the magnet [13]. For a “short” magnet,
γφm � 1, the total energy loss of rectangular bunch is
equal to

∆Etot = −2
3

e2N2

lb
γ2φ2

m . (4)
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The energy loss of the rectangular bunch passing a “long”
magnet,γφm � 1, is equal to:

∆Etot = −N2e2

lb
[4 ln(γφm) − 2] . (5)

These results has been obtained in ref. [13] by means of
calculation the radiative interaction of the electrons in the
bunch. It is interesting to compare the total energy loss
of the bunch with the energy of coherent radiation in far
zone. The radiation energy in far zone can be calculated
as an integral over frequency of the spectral density of the
radiation energy:

dWcoh

dω
= N2η(ω)

dW

dω
, (6)

whereη(ω) is the bunch form factor (squared module of the
Fourier transform of the linear density distribution). The
form factor for the rectangular bunch of the lengthlb is
given by the expression:

η(ω) =
(

sin
ωlb
2c

)2(
ωlb
2c

)−2

. (7)

FunctiondW/dω entering eq. (6) is the spectral density
of the radiation energy of a single electron. The angular
and the spectral characteristics of the radiation of an elec-
tron moving in an arc of a circle have been studied in ref.
[14]1. It has been shown that the spectrum of the radiation
emitted by an electron moving in an arc of a circle differs
significantly from that of conventional synchrotron radia-
tion of an electron executing periodical circular motion. In
the latter case the spectral density at low frequencies is pro-
portional toω1/3 [16]. In the case of a finite curved track
length the spectral density is constant atω → 0. When the
bending angle is small,φm � 1, the spectral density of
the radiation energy emitted by ultrarelativistic electron is
function of the only parameterγφm [14]:

dW

dω
=

e2

πc
fm , (8)

where

fm =
(

µ +
1
µ

)
ln

1 + µ

1 − µ
− 2 ,

and

µ =
γφm/2√

1 + (γφm/2)2
.

Formula (8) is valid in the frequency rangeω � c/Lsl.
Taking into account formula (7) we can estimate that typi-
cal frequencies of the coherent radiation are below the fre-
quencyω ∼ c/lb. It means that we can use the asymptot-
ical expression (8) in the case whenlb � Lsl. Integrating
eq. (6) over the frequency, we obtain:

Wcoh =
e2N2

lb
fm . (9)

1The same problem has been considered later in ref.[15], but the results
of this paper are incorrect.

It is easy to obtain that in the case of a “long” magnet,
γφm � 1, the energy of coherent radiation (9) coin-
cides exactly with the bunch energy loss given by eq. (5)
taken with opposite sign. In the limit of a “short” mag-
net,γφm � 1, there is also complete agreement between
formulae (9) and (4).

3 BUNCH WITH AN ARBITRARY DENSITY
PROFILE

The solutions obtained in ref. [13] for the rectangular bunch
can be generalized for the case of an arbitrary linear charge
density. We present here the results of the calculation of the
transition process when the bunch enters the magnet. Let
the bunch have the density distributionλ(s) which satisfies
the condition

R

γ3

dλ(s)
ds

� λ(s) . (10)

Under this condition the rate of the energy change of an
electron is given by the expression [13]:
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(11)
wheres is the position of the electron in the bunch andφ is
azimuthal angle.

For the Gaussian density distribution:

λ(s) =
N

(2π)1/2σ
exp

[
− s2

2σ2

]
, (12)

expression (11) takes the form:

dE
d(ct)

= − 2e2N

31/3(2π)1/2R2/3σ4/3
G(ξ, ρ) , (13)

where functionG(ξ, ρ) is given by the expression:

G(ξ, ρ) = ρ−1/3
[
e−(ξ−ρ)2/2 − e−(ξ−4ρ)2/2

]

+

ξ∫
ξ−ρ

dξ′

(ξ − ξ′)1/3

d

dξ′
e−(ξ′)2/2 . (14)

Hereξ = s/σ andρ = Rφ3/24σ. FunctionG(ξ, ρ) re-
duces to

G(ξ, ρ) ' −9
2
ξ exp(−ξ2/2)ρ2/3

atρ � 1. In the opposite case, atρ → ∞, expression (14)
tends to the steady-state solution [11, 5, 12]. In Fig.1 we
present the plot of function (13). One can see that there
is excellent agreement of analytical results [13] and the re-
sults obtained by means of numerical simulation code [6].
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Figure 1: The rate of an electron energy change as a func-
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steady state. The curves are the results of calculations with
formula (13) and the circles are the results of numerical
simulations presented in ref. [6]. The parameters are as
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