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Abstract

Since about 10 years survival plots have been used to eval-
uate single–particle long–term stability. In a recent paper
(M. Giovannozzi et al.) this concept has been reviewed,
using a dynamic aperture (Dyn.Aper.) definition based on
the average over different ratios of emittances. It has been
shown that the survival times evaluated according to this
procedure decay with the inverse of the logarithm of the
number of turns in several different systems. In this paper
the validity of this conjecture is tested in the case of the
latest LHC lattice which has been studied extensively.

The inverse log conjecture also predicts a non–zero
Dyn.Aper. at infinite times calledD∞. The tracking data
are analysed for LHC lattice to determine the relation be-
tweenD∞ and the onset of chaos determined through Lya-
punov exponents. Two different methods to automate the
prediction of the Lyapunov exponent are tested and are
compared withD∞.

1 INTRODUCTION

In Ref. [1] (see also Ref. [2]) it has been shown
that for several dynamical systems the evolution of the
Dyn.Aper.D(N) as a functions of turn numberN is well
described by the following equation here called theInverse
Log Conjecture:

D(N) = D∞

(
1 +

b

log10(N)

)
. (1)

The D∞ can be interpreted as the Dyn.Aper. after an in-
finite number of turns while theb appears to be a mea-
sure of the range of amplitude where particle loss will
take place, e.g. a valueb = 3 means that after 1’000
turns the Dyn.Aper. is still a factor of two larger thanD∞.
For this relation to work a precondition is to average the
Dyn.Aper. over the four dimensional phase space as de-
scribed in Ref. [3]:

D(N) =

(∫ π/2

0

[Dα(N)]4 sin(2α)dα

)1/4

, (2)

whereα is related to emittance ratioεII/εI by:

α = atan
√

εII/εI , (3)

e.g. (α = 45◦) corresponds to a emittance ratio of
(εII/εI = 1). As the tracking for the LHC is usually
done in the full six dimensional phase space one could ar-
gue that an average over the six dimensions is needed. This
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is not done for the following reasons: firstly the nonlin-
ear coupling between longitudinal and transverse planes is
small which allows the separate treatment of the longitu-
dinal plane, secondly for the LHC tracking the initial con-
ditions in the longitudinal phase space are not varied but
fixed to one set of pessimistic and therefore large values
and lastly the tracking effort would have to be increased
by another factor of ten. One aim of this report is to check
the conjecture for the LHC version 4 which has been exten-
sively studied (see Ref.[4]). Another aim is the understand-
ing of the relation betweenD∞ and the onset of chaos.

2 FITTING TECHNIQUE

One can rewrite Eq. 1 as follows:

D(N) · log10(N) = D∞ · log10(N) + D∞ · b, (4)

wherelog10(N) is treated as an independent variable. Thus
D∞ denotes the slope andD∞ ·b the offset of a linear func-
tion which describesD(N) · log10(N). A linear regression
yields both quantities with a certain error∆. The error of
D(N) is calculated to be:

∆(D(N)) = ∆(D∞) + ∆(D∞ · b) 1
log10(N)

(5)

It should be noted that the multiplication ofD(N) with
log10(N) in Eq. 4 puts a stronger weight on loss boundaries
at larger turn numbersN where they are most relevant.

3 CONJECTURE TEST
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Figure 1: Fits of Eq. 4 from102 to 105 and 106 as well
as the extrapolation to107 turns for one realization of the
imperfect LHC

Figure 1 summarises the tracking data and the fitting re-
sult for one realization of the imperfect LHC: the tracking
has been performed for 17 emittance ratios up to106 turns.
For the emittance ratio of one (α = 45◦) the tracking has
been prolonged to107 turns. A linear regression fit accord-
ing to Eq. 4 is performed up to105 and106 turns. The fits
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are extrapolated to107 turns and quoted with their errors.
The data forα = 45◦ which deviate from the phase space
averaged data at small turn numbers are consistent with
both fits beyond106 turns within their errors. Moreover,
reducing the number of angles to 9 changes the predicted
D∞ by a mere 1.1%. A bit worrying is the fact that the fit-
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Figure 2:D∞ determined from a cumulative fit and a slid-
ing fit

tedD∞ is increasing by 3%. Figure 2 shows that this is due
to the fact that the sliding fit ofD∞ is increasing monoton-
ically after a few thousand of turns, i.e. the Dyn.Aper. de-
creases less rapidly than the linear fit does imply. Applying
the conjecture fit to 60 machine representations (Figure 3)
reveals a small anti correlation betweenD∞ andb which
could mean that the linear relation of Eq. 4 is based on a
too simple assumption. On the other hand the figure also
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Figure 3:Scaled Dyn.Aper. and the conjecture fit parame-
tersD∞ andb

shows that the fit constants and the Dyn.Aper. scaled from
105 to 106, using the inverse log conjecture, have small er-
rors. Even though the fit parameters may not have a clear
physical meaning the two parameter fit may still be use-
ful to extrapolate the Dyn.Aper. to larger turn numbers. To
check this assumption emittance ratio scans have been ex-
tended up to106 turns for 5 different seeds (see Figure 4).
The fit involving data up to105 turns and the tracking data
for 106 turns agree within the error bars of the extrapola-
tion.

4 CHAOS AND D∞

Since many years the chaotic boundary has been used to
estimate the long–term Dyn.Aper. (see Ref. [5]).D∞ de-
termined from the conjecture fit should agree with the on-
set of chaos because both quantities describe the stability
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Figure 4:Comparison of tracked and scaled Dyn.Aper.

boundary in phase space. Agreement of the two indepen-
dent methods would giveD∞ a physical meaning at least
in a heuristic manner. It is well known that there cannot be
a rigorous non–zero loss boundary over infinite number of
turns in a system with more than two degrees of freedom
due to the loss of particles in the Arnold web (see Ref.[6]).
However tracking studies for various systems have clearly
shown that there always seems to be a hard core of stabil-
ity in the amplitude space which is equivalent to a non–
zeroD∞. Two models have been tested: the four dimen-
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Figure 5:The H́enon model –Top: Stable amplitude ver-
sus emittance ratio between102 and 107 turns, Bottom:
Survival plot, conjecture fit and chaos boundary

sional Hénon model and the LHC case for which the con-
jecture fit is shown in Figure 1. Due to its simplicity the
first model can be tracked for a large number of angles and
turn numbers (40 and107 respectively) while the LHC can
be tracked for only 17 angles and106 turns. The LHC
study has required two weeks of CPU time of a power-
ful 10 processor workstation cluster [7]. TheTop part of
figure 5 and 6 depict the Dyn.Aper. versus emittance ra-
tio, a curve is shown for each decade of turn numbers. It
should be noted however that the tunes of the latter have
been carefully chosen [8] (Qx=0.168,Qz=0.201) to ob-
tain a sizeable chaotic regime while for the LHC the tunes
(Qx=63.28,Qz=63.31) are placed where the Dyn.Aper. is
expected to be at its optimum value. For the phase space
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averaged Dyn.Aper. the conjecture fit agrees well with the
tracking data in both cases (seeBottom part of Figure 5
and 6). Chaos is detected by tracing the path of two initially
close–by particles. This method is preferred over the orig-
inal one introduced by Benettin et al. [9] as in this context
the most sensitive measure is more relevant than the precise
knowledge of the Lyapunov exponent. Owing to the fact

5

7

9

11

13

15

17

0 10 20 30 40 50 60 70 80 90

K=atan(sqrt( εεII/εεI)) [Degree]

A
m

pl
itu

de
 [

σσ]

100

1'000

10'000

100'000

1'000'000

10'000'000

0 2 4 6 8 10 12 14 16

Amplitude [ σσ]

N
um

be
r 

of
 T

ur
ns     Phase Space

Averaged Data
    Inverse Log Fit

   Fit of D_infinity

   Chaos (Distance           
Method)
   Chaos (Slope Method)

Figure 6: The LHC –Top: Stable amplitude versus emit-
tance ratio between102 and106 turns,Bottom: Survival
plot, conjecture fit and chaos boundary

that the automatic detection of the onset of chaos is much
more difficult than the reliable but time consuming inspec-
tion by eye a new approach has been attempted. Two dif-
ferent values can be automatically extracted from the track-
ing data: the first method uses a threshold of the distance
in phase space which is larger than the final separation of
any two regular (initially close–by) particles at the end of
the tracking, the second method calls motion chaotic once
the slope, calculated from the evolution of the distance in
phase space in a double logarithmic scale, is outside a cer-
tain interval of slope values (for regular motion the slope
is one). In the following these techniques are called the
distanceand theslopemethod respectively. The distance
method is certainly safe due to its definition. However, it
is an optimistic estimate because weakly chaotic particles
may not have enough time to separate beyond the chosen
threshold. The slope method is less precisely defined: it
may be also optimistic in the case where the motion is so
weakly chaotic, that the slope is not affected, but it may
be pessimistic because it can pick up large oscillations of
particles which are close to some resonance but neverthe-
less regular. The slope method is preferable because it is
more consistent with the inspection by eye. It should be
mentioned that both methods can be improved by using fre-
quency analysis [10] which allows to eliminate most of the
regular oscillations of the evolution of the distance in phase
space. In the case of the H´enon model the slope method is

pessimistic and very close to theD∞ fit. From the above
discussion it is not surprising thatD∞ itself varies widely
as a function of turns. As expected the distance method is
optimistic at low turn numbers. At107 turns, however, all
three curves converge to almost the same point. It should be
noted that this behavior has been reproduced at two other
tune working points (Qx=0.201,Qz=0.168 andQx=0.201,
Qz=0.112). For the LHC the distance and the slope method
are both optimistic. Also in this case the latter agrees quite
well with D∞ at large turn numbers. It is clear from these
dependencies that the motion of particles in the LHC case
reveals very weak chaotic behavior over a large range of
amplitudes.

In both models the fit ofD∞ appears to be pessimistic in
an intermediate turn number regime. In fact, in all studied
LHC casesD∞ is a too pessimistic estimate of long–term
stability.

5 CONCLUSION

The inverse log conjecture has been thoroughly tested for
the LHC version 4. Although doubts remain about the
physical meaning ofD∞ andb the fit can be used to ex-
trapolate the Dyn.Aper. from105 to 106 turns. There are
indications that this extrapolation can be further extended
to 107 turns. The chaos andD∞ border seem to converge
for large turn numbers for both the H´enon and the LHC
model.
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