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Abstract

We describe large-signal klystron simulations using the
particle-in-cell code KLSC.  This code uses the induced-
current model to describe the steady-state cavity
modulations and resulting rf fields, and advances the
space-charge fields through Maxwell’s equations.  In this
paper, an eight-cavity, high-power S-band klystron
simulation is used to highlight various aspects of this
simulation technique.  In particular, there are specific
issues associated with modeling the input cavity, the gain
circuit, and the large-signal circuit (including the output
cavities), that have to be treated carefully.

1  INTRODUCTION

We have recently developed a new large-signal klystron
simulation code, KLSC.  KLSC is a particle-in-cell code,
and represents a significant advance over previously
available simulation tools [1,2], which tended to use
point-by-point space-charge forces, and were thus limited
to less than a hundred simulation particles.  In addition to
the limitation on the number of particles, these codes also
assumed that the space-charge fields could be solved
electrostatically in some beam frame of reference, which
is certainly not true when the beam is in the output cavity
and there is a large energy spread.  KLSC uses a uniform,
rectangular mesh to calculate the space-charge fields, and
advances the fields according to the Maxwell curl
equations [3].  Particles travel along this mesh, being
pushed by the Lorentz force equation.  A charge-
conserving algorithm is used to evolve the space-charge
fields, where the current is determined from the particles’
motion on the mesh.  The cavity rf fields are
superimposed on this mesh (the field distribution is
provided by the code SUPERFISH), and superposition of
both the space-charge and rf fields is used to determine
the particle motion.  This separation of the rf and space-
charge fields is allowable; the only approximation that
arises is that the boundary condition on the space-charge
mesh does not include the cavity gaps and shapes around
the cavity noses.  The particle motion is used to calculate
the driven modulation of the rf cavities.  An iteration
scheme is then used to converge on an rf field amplitude
that leads to a self-consistent particle motion.

There are three separate regimes of large-signal
klystron simulation, each with distinct simulation issues.
These are the input cavity, the gain circuit (the cavities
providing the gain from the small-signal amplitude in the
input cavity to the large-signal amplitude in the

penultimate and output cavities), and the large-signal
circuit   (the   penultimate   and   output  cavities).

TABLE 1:  Operating Parameters
Operating frequency 3 GHz
Beam current 796 A
Beam voltage 720 kV
Input power 3.5 watt
Output power 310 MW
Efficiency 54%

The difficulties in the input cavity and the gain circuit are
due to numerical stability of the iteration procedure.  The
iteration scheme is more straightforward for the large-
signal circuit, and the issue here is the self-consistent
simulation of multiple coupled output cavities.

In the next section, we will describe the induced
current model used as a basis for the self-consistent
calculation of the rf cavity field amplitudes, and the
iteration schemes available for determining the self-
consistent parameters.  Following that, we will use a
simulation of a high-power, S-band klystron, designed by
MDS Company, to describe features of the simulation
technique.  First, we will present the model describing the
input cavity’s interaction with both the external drive and
the electron beam, including the required input power as
a function of input cavity loaded and unloaded Q and
resonant frequency.  Then, we will describe the
calculation of the gain circuit, comparing the cavity
modulation to that predicted by using the beam
impedance in parallel to the cavity impedance.  Finally,
we will demonstrate the code’s ability to handle multiple
penultimate and output cavities, with three penultimate
and two coupled output cavities.  The nominal beam and
cavity parameters are shown in Tables 1 and 2.

TABLE 2:  Cavity Parameters
Cavity Resonant

Frequency
Shunt
Impedance

R/Q Voltage

1 3015 MHz 351 kW 124 W 709.3 V
2 2991 351 117 18.4 kV
3 3009 351 115 195
4 3330 432 144 182
5 3350 435 145 265
6 3420 450 150 310
7 894
8 1211
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The first cavity is the input cavity.  Cavities two and
three are for gain and constitute the gain circuit.   Cavities
four through six are penultimate cavities, and, along with
cavities seven and eight (the output cavities), make up the
output circuit.  Cavities seven and eight are coupled, with
impedances Z77 = (14.1+j569) W, Z78 = Z87 = (175-j5.3) W,
and Z88 = (2315-j67.2) W.

2  CAVITY/BEAM-INTERACTION MODEL

In Fig. 1 we see the circuit model for a cavity.  The cavity
impedance, Zcav , is given in terms of the cavity shunt

impedance R, the cavity resonant frequency  f 0 , the

operating frequency f , and the cavity R Q/  factor by

1 1 1

0

0

Z R
j

f

f

f

f R Qcav

= + -
æ

è
ç

ö

ø
÷

/
   .

There can also be some coupling to an external drive,
which is not shown.  The gap voltage is given by

V Z igap cav= 1    ,

where i1 is the current in the cavity circuit due to the

beam, usually known as the fundamental component of
the beam induced current.  The instantaneous induced
current i tind ( )  is given by Ramo’s theorem [4],
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where the space-charge current is given by 
r

J , the electric

field 
r

E  is only from the cavity rf fields, and the integral
is taken over the entire cavity volume V.  The
fundamental component of the induced current is defined
by the expansion

i t i i t i tind ( ) cos( ) cos( )= + + + + +0 1 1 2 22w f w f K

This set of equations (along with the Lorentz force
equation for the particle motion due to the rf cavity
fields) fully represent the self-consistent solution to the
cavity excitation.  The iteration scheme in KLSC is based
on guessing a cavity voltage, pushing the electrons for an
rf period, evaluating the fundamental component of the
induced current,  and  re-evaluating the cavity voltage.
If the re-evaluated cavity voltage is sufficiently close to
the guess, the solution is considered to be self-consistent.
If not, this procedure is iterated, typically using a
weighted average of the newly calculated cavity voltage
and the original guess as the guess for the next iteration,
until a self-consistent solution is reached.  The weighting
factor is called the relaxation factor.

Figure 1.  Beam/cavity interaction circuit

3  INPUT CAVITY

For the input cavity, we wish to calculate the input power
drive required to establish a certain field amplitude.  We
could use the iterative procedure outlined above to find
the effect of the induced current in the input cavity, but it
does not typically converge (because the induced current
counters nearly all of the input drive and thus small errors
in the cavity voltage guess will lead to very large
fluctuations in the re-evaluated cavity voltage).
However, the procedure to find a self-consistent solution
is straightforward for this cavity.  The effect of the
induced current is to establish an effective beam
impedance, Zbeam, which acts in parallel with the cavity

impedance.  This beam impedance can be found by
numerically calculating the induced current for a given
cavity modulation - the induced current only depends on
the cavity modulation and not on the cavity impedance
itself.  The beam impedance is then given by the cavity
voltage divided by the fundamental component of the
induced current [5].  The power required from the
generator is
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where the cavity-input waveguide coupling is given by

b p= Z Z f Mcav0
2 22/ ( ) , and where Z0  is the input

waveguide characteristic impedance and M is the mutual
inductance between the waveguide and the cavity.  The
cavity Q loaded by the input waveguide is given in terms
by the coupling and the unloaded cavity Q, Q0 , by
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.  If the cavity is matched (no reflected

power), the power from the generator is given by
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The input is matched if the cavity detuning is
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and the externally loaded cavity Q is
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4  GAIN CIRCUIT

The relaxation iteration scheme outlined in Section 2 also
does not work well for the high gain cavities, for the
same reason as for the input cavity.  However, we cannot
now simply use the beam impedance in parallel with the
cavity impedance to find the cavity modulation - the
cavity modulation directly affects the current modulation
driving the cavity.  For this case, the particles’ motion
must be simulated through the cavity and the induced
current calculated.  Instead of using relaxation to
determine a new guess for the cavity voltage, the
derivatives of the voltage equal to the induced current
times the cavity impedance with respect to both the real
and imaginary part of the guess voltage is found, and a
new voltage is predicted.  This two-dimensional Newton-
Raphson approach is needed because the function defined
by the induced current times the cavity impedance is not
analytic.

The resulting self-consistent cavity voltage is
somewhat different than would be found by simply
assuming that the cavity and beam impedances were
driven by the input current modulation.  For the second
cavity in this example, the self-consistent voltage is 18.35
kV, with a phase of 2.73 radians.  Using the simple beam
impedance approximation (and the induced current in the
second cavity due only to the fields in the first cavity),
one would have guessed that the cavity voltage should be
22.6 kV, with a phase of 2.96 radians.  The error in the
magnitude is from correlations between the induced
current arising from the two cavities, and the error in
phase is from the fact that there is no external drive
power and the power in the cavity must come from the
beam itself.

5  OUTPUT CIRCUIT

The output circuit, defined by the penultimate and output
cavities, is comparatively simple to simulate.  The
relaxation iteration scheme works well for these cavities
(the induced current is not drastically modified by the
fields within the cavities themselves).

In Fig. 2, we plot the axial electric field at the center
of the beam as a function of time at an axial location
roughly between the output cavities.  We see the axial
field has reached steady-state after about 40 rf cycles, and
that the higher harmonic fields are slipping in phase
relative to the fundamental, due to the relatively large
beam pipe.  In Fig. 3, we plot the instantaneous current as
a function of time at the same axial location.  The beam is
clearly well-bunched (the induced current in the output
cavities is about 80% of the average beam current).  The

gentle exponential rise of the current is also evident at the
beginning of the plot.  In Fig. 4, we plot the particles’
gbz  as a function of axial position, at the end of the

simulation.  For this simulation, the first output cavity is
centered at 1.1 m and the second at 1.14 m.  The
bunching and energy extraction is clear in this plot.

Figure 2.  Axial electric field versus time in the output circuit.

Figure 3.  Current modulation versus time in the output circuit.

Figure 4.  Particle gbz  versus axial position at the end of the

simulation.
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