
STATUS OF UNIFIED ACCELERATOR LIBRARIES

Nikolay Malitsky and Richard Talman,
Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853

Abstract

The Unified Accelerator Libraries (UAL) form an object-
oriented programming toolkit for developing distributed
accelerator software. At this time the UAL joins accel-
erator programs DA, PAC, and TEAPOT thereby imple-
menting a set of fundamental accelerator data structures
and algorithms: an accelerator lattice model, element-by-
element particle tracking, differential algebra, and others.
The Application Programming Interface (API), written in
Perl, provides a universal homogeneous environment for
invoking, customizing, and extending diverse accelerator
algorithms, and integrating them with other computer soft-
ware. It can be considered a model of the Accelerator Sim-
ulation Facility based on the CORBA Business Object Fa-
cility and the UAL framework.

1 BASIC CONCEPTS AND ARCHITECTURE

The Unified Accelerator Libraries toolkit is designed as a
customizable and extendible environment for developing
mission-critical applications. This goal is achieved by the
fundamental Model/View/Controller (MVC) paradigm[1].
Following the MVC pattern, the UAL is partitioned into
three categories: Accelerator Objects (accelerator model,
bunch, etc.), Physics (analysis, optimization and correc-
tion algorithms,etc.), and Application Programming Inter-
face (‘input language’). Each accelerator program is con-
sidered as a separate self-contained class, that may have its
own internal organization and methods. Connection with
the UAL is by common data objects of the first category.
At this time the UAL joins three object-oriented accelera-
tor programs (as shown in Fig. 1): Platform for Accelera-
tor Codes (PAC)[2], Thin Element Program for Optics and
Tracking (TEAPOT)[3], and Differential Algebra (DA)[4].

View  Integrator<class p>

 

Other

Software

     Computer
DA PAC TEAPOT 

Tps VTps SMF Beam Optics Survey

APPLICATION  SCRIPTSEXTENSIONS

PERL  API

Lie & Rk DA Integrators

Figure 1: Unified Accelerator Libraries Environment.

The PAC is a collection of Accelerator Objects that can
be shared, exchanged,or converted by other codes and pro-
cesses. TEAPOT and DA are the implementations of the
two different theoretical algorithms for simulating particle
motion in accelerator elements. The UAL distributed archi-

tecture makes it possible to merge these diverse approaches
seamlessly to provide optimal conditions for studying ac-
celerator performance. Moreover, the present TEAPOT
tracking engine is developed as a C++ template that can
be instantiated either to provide the original functionality
or as a DA integrator. The ‘input language’ is a key part
of accelerator programs. According to the Standard Input
Format (SIF)[5] (and the MVC paradigm) it may be divided
into two major parts: the Accelerator Description and Ac-
tions. Accelerator is a complex system that includes many
elements of different physical types, each having many at-
tributes, all organized in a more or less hierarchical fashion.
The second part, Actions, have traditionally consisted of
an even more heterogeneous collection of commands and
directives. This has resulted in the creation of diverse ‘in-
put languages’ and formats, each requiring a ‘proprietary’,
’embedded’ parser to perform the conversion from human
readable ASCII files to the internal data structures. To re-
solve the problem we have introduced an Application Pro-
gramming Interface (API) based on the standard object-
oriented interpreter (e.g. PERL) and the UAL Accelerator
Objects:

API = PERL + UAL Accelerator Objects

This approach makes it possible to include other ‘input lan-
guages’, such as MAD[5] and COSY[6], and provides a
description ofall accelerator elements and access toall ac-
celerator methods. One can consider such a homogeneous
shell as a foundation for establishing the Catalog of Ac-
celerator Designs and Scenarios. Especially, it seems in-
teresting for storing ‘start-up’ scripts of future Simulation
Facilities.

2 APPLICATIONS

The last several years have witnessed a new phase in accel-
erator physics’ evolution that is characterized by two ten-
dencies: focus on new physical effects and devices (e.g.
spin and helical dipole) and research on combined hetero-
geneous effects (beam-beam + machine nonlinearities +
tune modulation + ...) on accelerator integral characteris-
tics (luminosity, period of long-time instability, and others).
The very flexible and extendible organization of the UAL
environment is addressed to solving these kinds of tasks.
In 1996/97 it has been applied by several groups to test its
capabilities:

• CESR, Wilson Laboratory:

– instantiation of uniform accelerator description
that can be initialized from scripts or embedded
C/C++ wrappers of control data;

24340-7803-4376-X/98/$10.00  1998 IEEE



– preliminary simulation of beam-beam perfor-
mance for Möbius accelerator;

• RHIC , Brookhaven National Laboratory:

– evaluation of performance with a helical magnet;
– investigation of tune modulation;

• Recycler, Fermi National Laboratory:

– evaluation and comparison of several theoretical
models for combined function magnets;

3 CORBA INTEGRATION

An interesting and challenging accelerator task is steer-
ing theoretical and experimental activities in a common
direction toward the development of an intelligent model-
based control system. In the SSC laboratory, the Accel-
erator Simulation Facility (ASF) project was initiated by
G.Bourianoff[7]. Since that time accelerator scientists and
software developers in FNAL and TJNAF[8] have achieved
significant progress, but the portability and interoperability
of present simulation facilities are still active problems. To
address them we have combined two components, Com-
mon Object Request Broker Architecture (CORBA)[9] and
Unified Accelerator Libraries (UAL):

ASF = CORBA + UAL

CORBA is an industrial standard for object-oriented dis-
tributed systems, introduced and developed by a consor-
tium, the Object Management Group (OMG), that includes
over 700 companies. Accelerator software based on the
CORBA implementations automatically becomes a part of
the modern technological process and inherits many pow-
erful CORBA benefits:

• standard distributed object infrastructure;
• uniform object-based interface and high-level lan-

guage bindings;
• natural integration with Java mobile environment for

developing the 3-tier Object Web systems;
• component portability and interoperability;
• local/remote transparency;
• natural integration with existing systems;
• 15 famous unified Services[10];
• Common Business Objects and a Business Object

Facility[11];

The OMG Business Object Facility (BOF) is a logical
product of the consistent CORBA evolution from interop-
erability to collaboration. The BOF is designed as a foun-
dation of industry-specific frameworks and applications.
Based on this specification, OMG members are currently
developing domain frameworks for Finance, Manufactur-
ing, Telecom, Electronic Commerce, and others. The ac-
celerator community should be ready to initiate similar ef-
forts. Figures 2 and 3 demonstrate parallelism between
an OMG Business Object Component and an Accelerator
Simulation Facility. The central concept of the BOF is

a cooperative Business Object Component. According to
the MVC pattern, Business Object Components consist of
three kinds of objects (as shown in Fig. 2)[12]: Business
Objects, Business Process Objects, and Presentation Ob-
jects.

Objects

Business

Objects

Process

Business

Objects

Presentation

Business

Object Component

Documents

Servers

Other
Objects

Legacy
Applications

Interfaces

Tier 1 Tier 3Tier 2

Business

Entity

Figure 2: OMG Business Objects.

Components exist at several levels of abstraction: Enter-
prise Model, Domain Model, Business Object, and Atomic
Concepts. They may be implemented by subtyping from
existing components of the same level or by combining
lower level components. To specify a Business Object
Model (BOA) and to facilitate the application development
process, the BOF provides also the Component Definition
Language (CDL). CDL extends the CORBA Interface Def-
inition Language (IDL) to represent the higher level con-
cepts found in the BOA. In the BOF terminology, the ASF
is an Accelerator Business Component at the Domain level
(Fig. 3) that includes three cooperative objects: Accelera-
tor, Control, and Interface.

Interface

Other
Objects

Tier 1 Tier 3

Control

Accelerator

Database

PERL
scripts

Libraries

Compound
Docs

PERL
scripts

Tier 2

Simulation Facility

Accelerator 

Figure 3: Accelerator Business Objects (Domain Model).

An Accelerator Business Object can be implemented
from PAC Accelerator Objects, and TEAPOT tracking en-
gine or other accelerator simulation codes. The next step in
the UAL development will be the integration of TEAPOT
matching and correction algorithms to become a part of the
Control Business Object. The ASF will provide two dif-
ferent Interfaces: Perl scripts and Graphical User Interface
based on the CORBA Compound Documents (containers
of ORBlets). Communication between different compo-
nents is by PAC Accelerator Objects. All components
(and their subcomponents) may reside in one or more com-
puters. The CORBA local/remote transparent mechanism
makes these details invisible to users and significantly sim-

2435



plifies the transformation of conventional codes into dis-
tributed facilities(Fig. 4).

User

ORB

algorithms
Correction

Engine
Tracking

Application

Interface
Programming

TEAPOT as a part of Simulation Facility

ORB

TEAPOT as an independent Simulation Code

Interface Control AcceleratorUser

Figure 4: Simulation Code vs. Simulation Facility.

To exercise the connections between different systems,
we have implemented a tiny tracking demo available over
the Internet that provides the simplest remote control to
the DA library (Fig. 5 and 6). Despite its simplicity, this
example demonstrates two interoperability features of the
CORBA architecture: high-level language bindings (Java
and C++), ORB vendor independence (VisiBroker and HP
ORB plus).

VisiJava
ORBlet

Taylor Map
Proxy
DA WWW

VisiJava
GateKeeper

IIOPHTTP

Tier 1

View Objects

Tier 2

Server Objects

Tier 3

Implementation

Server DA (C++)
Server
DA

C++
HP ORBplus

Figure 5: The 3-tier Object Web tracking demo.

4 ACKNOWLEDGEMENTS

One of the authors (N.Malitsky) would like to thank the
members of the Nile project, Mike Athanas, Dan Riley,
Mark Rondinaro, and Greg Sharp, for useful discussions
and valuable suggestions.

5 REFERENCES

[1] G.E.Krasner and S.T.Pope. A cookbook for using the model-
view-controller user interface paradigm in Smalltalk-80,
Journal of Object-Oriented Programming, 1(3):26-49, Au-
gust/September 1988.

[2] N.Malitsky, A.Reshetov, G.Bourianoff. PAC++:Object-
Oriented Platform for Accelerator Codes, SSCL-675, June
1994.

[3] L.Schachinger and R.Talman. Teapot: A Thin-Element Ac-
celerator Program for Optics and Tracking, Particle Accel-
erators,22, 35(1987).

[4] N.Malitsky and A.Reshetov, to be published.

Figure 6: Tracking demo ORBlet.

[5] D.C.Carey and F.C.Iselin. Standard Input Language for Par-
ticle Beam and Accelerator Computer Programs, Snow-
mass, Colorado, 1984.

[6] M.Berz. COSY INFINITY, Refernce Manual, Technical Re-
port 28881, LBL, 1990.

[7] G.Bourianoff, A.Reshetov, N.Malitsky. Object-Oriented
Approach for the Design of the Simulation Facility of the
SSC, SSCL-677, July 1994.

[8] C.Watson, J.Chen, D.Wu, W.Akers. Introduction to CDEV,
Version 1.5, TJNAF, December 1996.

[9] CORBA 2.0/IIOP, OMG Technical Document formal/97-
02-25.

[10] CORBAservices: Common Object Services Specification,
1996.

[11] BODTF-RFP 1 Submission, Business Object Facility, 1997.

[12] R.Orfali, D.Harkey, J.Edwards. Instant CORBA, Wiley
Computer Publishing, 1997.

2436


