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Abstract wheref(t) is a stochastic phase error. For sntdH) this

We report results of calculations and measurements rel&&" be approximated by

ing RF phase noise to longitudinal motion of a stored beam. SV = Vi 0(t) cos b (8)
Treating the beam as a noise driven coupled oscillator sys-

tem, we have made calculations to determine what coupled The equation of motion including both additive and mul-
bunch synchrotron oscillation amplitudes result from REiplicative noise is

phase noise. Measurements have also been carried out at - . 5

CESR of phase noise in the RF system and coupled bunch ¢+ 2as0 + (2 +g(t))o = f(B), ()
synchrotron oscillation amplitudes. We also consider thﬁ/heref(t) is the additive noise term angdt) is the multi-

impact of this noise on the dynamic range of a Iongitudinea[5|icati\,e noise term. For amplitude noise
feedback system.

hwon .
t) = ——- t)s s 10
1 UNCOUPLED SINGLE BUNCH RESPONSE fa® chTOev( Jsin . (10)
The equation of motion for small phase oscillatighnis an ga(t) = hw(;] e v(t) cos s, (12)
accelerator is given by [1] cpoto
. . ) and for phase noise
¢+ 2050 + Q59 =0, 1)
= o at) cos 12
whereq, is the damping decrement given by fo(t) = epoTo . ° (t) cos s (12)
h
o — 1 dUu 2 ge(t) = w(;) eVo 0(t) sin 1)s. (13)
s 2Ty dE |y, poto

) ] Either RF amplitude noise or phase noise can produce
and{Y; is the synchrotron frequency given by both additive and multiplicative noise in the equation of
h motion for¢. Though in general amplitude noise will con-
5 —hwone dV : LI . . :
Q5 = T~ 35| (3) tribute more to multiplicative noise, and phase noise will
cpoTo  dy ]y, contribute more to additive noise.

whereTy is the revolution timeyy is the revolution fre-
guency withhwy = wrp, andy is the momentum com-

1.1.1 Additive noise

paction. For a sinusoidal driving potential, The complex frequency respongé(w), to a noise driving
force (additive noise only) can be found by making the sub-
V() = Vosing = Vosin(ys + ), (4)  stitutiong(t) = H(w)exp(—iwt) and f(t) = exp(—iwt)

. , - i i in the equation of motion to obtain [2]
wherel} is the amplitude of the driving potential agd is

the synchronous phase, Eq. 3 becomes _ -1
Hw) = w2 — 02 + 2iasw’ (14)

_ —hwon

2 3 . .
Q5 epoTo eVo cos s, () The mean square response is then given by
oo
1.1 Noise response (%) = / |H (w)|?S (w)dw

An RF noise errorgV/, can add either a noise forcing term 0o S(w)
(additive noise) or frequency fluctuations (multiplicative = / o 2f2 1o sdw  (15)
noise) or both in Eq. 1. For amplitude noise, oo (2 —w?)? +dafw

where S¢(w) is the mean square spectral density of the

OV = v(t)sin(y), 6)  excitation (noise). The spectral density is the Fourier
whereu(1) is a stochastic amplitude error. For phase noisdransform of the autocorrelation function of the excitation,
f(T), i.e.
8V = Vo (sin( + 0(t)) — sin())), ) L e |
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where We can treat this as a system comprised of two coupled
R(t—t")=(f@t)f(t)) (17) oscillators, the cavity and the beam. Consider two oscilla-
tor; cascaded where one is driven and there is no feedback
0 . . i .
%r3m the second oscillator to the first, having equations of
motion

where the brackets denote an average over the ensembl
realizations off. For white noiseS;(w) = S; = constant,

w8y
(¢*) = Yol (18) i+ 200 + Q2 (23)

G420y +Qy = a(t) (24)

~
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1.1.2 Multiplicative noise

The derivation of the response for a combination of additiv¥ is easy to show that in this case the spectral response of
and multiplicative noise is a bit more involved. The resulthe second oscillator is

given is only good for zero-centered, delta-correlated white

noise where the spectral density fg) is S)(w) = H,(w) = —— H;c(w) o H,, (W) H,(w) (25)
Sty = constant. From references [3, 4] the mean square w? — O + 2iayw

response is given by

whereH,,, andH,, denote the spectral response functions
_ 7Sy (19) for the uncoupled oscillators. The mean square response is
20,02 — Sy’ then just the combination of the uncoupled response func-

. ] tions with the spectral density of the excitation
Comparing this to Eq. 18 one can see that the frequency

fluctuations act to increase the the mean square phase os- ) /oo

(%)

cillations. This can be interpreted as an effective increase (y7) = |Hao (W) Hyo () [*Sf(w) dw.  (26)
of the spectral density of the additive fluctuatiosy, —
St/(1 —mS,/2a:0%). Also note that Eg. 19 only makes
sense foiS, < ma, Q2. ForS, > ma02, large frequency
fluctuations produce an energy instability that grows exp

nentially in time.

— 00

A similar case arises for the system we are considering
when there is little beam loading on the RF cavities; the
Yhotion of the beam is driven purely by the voltage in the
RF cavity. The spectral response of the RF cavity is given
by the impedance of the cavity and the spectral response of
the beam is given in Eq. 14. In this case, the total response
For a single bunch of charg¥e in a circular accelerator, of the beam s given by
the equation of motion for small phase oscillations includ-
ing coupling due to wake fields is [5]

2 COUPLED BUNCH RESPONSE

~ Nron (wrr + w)Z(g (Wrr +w)

H = 27
¢ + 2050 + 29 W= e @0
Qg @ =
: > For an RF cavity impedance
S W (~KC)(0(6) — ot - KT0). (20 v
o . Zl(w) = —— (28)
For additive noise forcing we can solve this in the same 1+4Q (% — ﬁ)

manner as in Sec. 1.1.1 for the spectral response. In terms

of the longitudinal impedance, the spectral response {ghere,,, is the cavity resonant frequency, Eq. 15 gives the

given by mean square response as
, iNron\ 1" 2
H(w) = - [wz — % 4 2iaw + ( 72 ) :] () 2y o (Nron\" _TS;_ge 29
7o <¢>N(7T02)4QSQ§ ’ (29)
where

N whereZ? = |Z)(wrp + Qo) 2 + | Z) (wrr — Q)| is ap-
= 3" [pwoZ) (pwo) — (pwo+w) Z) (pwo +w)]. (22)  Proximately given by
pP=—00

(1]

3 RFCAVITY COUPLING 7* = whp R ( 02 :
1+47% (2 — Aw)?
The cavity itself is also coupled to a generator that drives i L
the voltage in the cavity. It was convenient to measure the 5 , (30)
noise of the generator rather than the noise in the RF cavi- 1+ 483 Qs + Aw)2>

ties. Therefore it was important to know how the noise in
the generator is transferred to the beam via the RF cavitieshereAw = wrr — w;..
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rate of a such a feedback system is

0En

< -
S 9 EQao,

(31)
whereo; is the rms phase fluctuation divided by the RF fre-
quency, and E is the average voltage applied to the beam,
equal to half the maximum voltage for a linear feedback
system.

The phase fluctuation in this case can come from either
the beam motion or the reference oscillator. We have found
that the reference oscillator phase fluctuations are much
larger than the beam phase fluctuationsgse2.5 ps. We
are constructing a feedback system for CESR with a maxi-
mum voltage of 1.5 kV, so the maximum damping rage
is1730s'.

4 RESULTS

4.1 Measurements
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plitude. The measured synchrotron oscillation amplitude
was 2.7 mrad. The noise spectral density of the RF gen-
erator at the synchrotron frequency was measured to b
1.7 x 10~ rackHz~'. From Eg. 29, this would corre-
spond to a synchrotron oscillation amplitudeldd mrad. 2]
Improvements were then made to reduce the noise in thL
RF generator. After the improvements were made the mea-
sured noise spectral density was x 10~'2 racHz .
This would correspond to a predicted synchrotron oscilla-
tion amplitude ofl.1 mrad compared to a measured ampli- [4]
tude of1.2 mrad.

[5]

CESR Parameters
Ey 5.3 GeV

To 256MS
~y 10370
n 0.01

a 1160s!
Q, 20 kHz

WRF 499.765 MHz
wy | 499.750 MHz

R, 140 MQ
Q 6275
N 10!

Table 1: The CESR parameters used for the calculations of
synchrotron oscillation amplitudes.

4.2 Longitudinal feedback

A receiver for a longitudinal feedback system might com-
pare the phase of the beam to a reference oscillator. The
resulting error signal would then be sent to a power ampli-
fier which would apply a voltage to the beam. The damping
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