VUV AND SOFT X-RAY LIGHT SOURCE "NEW SUBARU"

A. Ando, S. Amano, S. Hashimoto, H. Kinosita, S. Miyamoto,
T. Mochizuki, M. Niibe, Y. Shoji, M. Terasawa, T. Watanabe,
Laboratory of Advanced Science and Technology for Industry,
Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-22, JAPAN

Abstract

The main facility of the New SUBARU project is the 1.5 GeV electron storage ring which is under construction at the SPring-8 site in Harima Science Garden City. The first beam commissioning from the SPring-8 LINAC is scheduled at the end of March, 1998. The aim of new SUBARU is to promote industrial activities in the local area (Hyogo prefecture) and to develop experimental investigations for new light sources.

1 INTRODUCTION

An 1.5 GeV electron storage ring for the light source in the region of VUV and soft X-ray is under construction at the SPring-8 site using the LINAC as an injector. The project team for new SUBARU between HIT and SPring-8 has been organized to establish the SR research complex in SPring-8. The storage ring has two very long straight sections (LSS,14 m each) comparing its small circumference (~119 m). Two LSS's are initially used for a 11-m long undulator (L-U) and an optical klystron(FEL), and two short straight sections (4m each) for an 2.3-m undulator (S-U) and an 8-T super conducting wiggler (SC-W). The natural emittance @ 1.5 GeV is 67 nm because the total number of main dipole magnets is 12. The maximum brilliance is expected as $10^{18}(photons/sec/mm^2/mrad^2/0.1\%bw)$. Considering complemenarity to the most brilliant light source in the world, SPring-8, new SUBARU aims to produce a short pulse of radiation. New ideas using such as laser-electron interaction or for beam cooling will be also tested in this ring. The main purpose of the project are as follows. (1) Research and development towards new light sources such as (a) a small and low cost source in the region from VUV to soft X-ray, (b) strong ring FEL and coherent soft X-ray, (c) very short light pulses and (d) beam cooling to obtain very small emittance and enery spread in a small ring. (2) Application for industry and biomedical such as (i) micromachining, (ii) investigation for new material and (iii) Xray microscopy. The project has also a 15-MeV LINAC for FEL (named as LEENA)[1]. The expected brilliance and enery region is shown in Fig.1. The energy region of \sim 0.1eV to \sim 50 keV will be totally covered.

2 STORAGE RING

The main parameters of the ring are summarized in Table 1. The characteristics are (1) quasi-isochronous and/or variable momentum compaction facter α_p between ± 0.001 ,

$\mathbf{F} = -1$, -1		
Fundamentals Injection energy	1	GeV
	1	GeV
Operation energy		
Stored current	< 500	mA
Circumference L	118.716	m
Revolution period	0.396	$\mu \sec$
Revolution freq.	2.525	MHz
Harmonic No.	198	
RF frequency	500	MHz
Betatron Tunes	6.21/2.17	
Chromaticity (ξ)	-19/-7.5	
α_p	0.001	
Straight sections	4m	$\times 4$
	14m	$\times 2$
	15	C-V
Operation parameters	1.5	GeV
Natural emittance (1σ)	67	nm
Coupling	10	%
Bending field	1.55	Т
Critical photon		
critical prioton	0.53	nm
	2.33	keV
Radiation loss/ Turn		
Radiation loss/ Turn Damping time	2.33	keV
Radiation loss/ Turn	2.33	keV
Radiation loss/ Turn Damping time	2.33 176	keV keV
Radiation loss/ Turn Damping time Longitudinal	2.33 176 3.42	keV keV msec
Radiation loss/ Turn Damping time Longitudinal X/Y	2.33 176 3.42 6.56/6.73	keV keV msec msec
Radiation loss/ Turn Damping time Longitudinal X/Y Energy spread	2.33 176 3.42 6.56/6.73 0.072	keV keV msec %
Radiation loss/ Turn Damping time Longitudinal X/Y Energy spread RF voltage	2.33 176 3.42 6.56/6.73 0.072 > 250	keV keV msec % kV
Radiation loss/ Turn Damping time Longitudinal X/Y Energy spread RF voltage Bucket height	2.33 176 3.42 6.56/6.73 0.072 > 250 > 0.83	keV keV msec % kV

Table 1: Main parameters of new SUBARU storage ring.

and (2) 14-m-LSS's. The ring has a hexagon shape and the unit structure is a double bend achromat cell with two 34-deg. bending magnet(BM) and one invert BM at the middle. The typical envelope functions are shown in Fig.2. The excitation strength of quadrupoles for various α_p is shown in Fig.3. The HOM damped cavity with SiC duct developed and used at INS-SOR and PF[2] is installed.

2.1 Bunch Length

The natural energy spread is calculated as $\sigma_{\delta} \simeq 4.8 \times 10^{-4} E$ where E is energy of electron beam measured in GeV and the bunch length is given by $\sigma_t \simeq 2.3 \times$

Figure 1: Expected brilliance of new SUBARU project compared with SPring-8.

Figure 2: Twiss parameters of the quadrant for $\alpha_p \simeq -0.001$. Real line: β_x , broken: β_y , dotted:dispersion(η).

 $10^{-8} (AE)^{1/2} \sigma_{\delta}(sec)$ where $|\alpha_p| = A \times 0.001$, because the RF voltage can be always higher than 250 kV. On the other hand the energy spread would become more large due to microwave instability. Supposing the Keil-Schnell criterion is applicable, σ_{δ} and σ_t become twice of the natural values at $\simeq 4$ mA/bunch for A = E = 1 and $|Z/n| = 0.1(\Omega)$, which is almost the same result by ZAP. To reach ~3 psec of σ_t is one of the goals of the accelerator R&D.

Figure 3: Strength of quadrupoles (QM) for various α_p . (Q1,Q2 : main QM, Q3, Q4 : adjusting QM for η , QA, QB, QC : matching QM for LSS).

2.2 Sextupole Correction

The control of higher order terms in momentum compaction facter is very important in a very small α_p or isochronous ring. As the second order islands in synchrotron oscillation appear at[3],

$$\delta_{\pm} = \{-\alpha_2 \pm (\alpha_2^2 - 4\alpha_1\alpha_3)^{1/2}\}/(2\alpha_3),$$

where revolution period is expanded as,

$$\Delta T/T = \alpha_p \delta = \sum_k \alpha_k \delta^k$$

the guide line for the free oscillation from these islands in the region of $|\delta| \leq 1\%$ becomes, $(1)|\delta_{\pm}| > 0.1$, $or (2)\alpha_2^2 - 4\alpha_1\alpha_3 < 0$, $or (3)|\alpha_3/\alpha_2| < 0.1(\alpha_1 \simeq 0)$, $|\alpha_2/\alpha_1| < 0.1(\alpha_3 \simeq 0)$. (In this paper α_p and η (momentum slipping facter) are treated as the same value.) Then the equations for correction are,

$$d\xi_x/dg_j = (\beta_x D)_j/(4\pi),$$

$$d\xi_y/dg_j = -(\beta_y D)_j/(4\pi),$$

$$d\alpha_2/dg_j = -D_j^3/(2L),$$

$$\begin{split} dA_{n,p}/dg_j &= (2^{1/2}8\pi n)^{-1} [\beta_x^{3/2}g \cdot exp\{i(p\theta + nQ_x)\}]_j, \\ dB_{1,q}/dg_j &= (2^{1/2}4\pi)^{-1} [\beta_x^{1/2}\beta_y g \cdot exp\{i(q\theta + Q_x)\}]_j, \\ dB_{\pm,r}/dg_j &= (2^{1/2}8\pi)^{-1} [\beta_x^{1/2}\beta_y g \cdot exp\{i(r\theta + Q_{\pm})\}]_j, \end{split}$$

where $\xi = \Delta \nu / \delta$, ν is a tune of betatron oscillation, β and D are the envelope function and momentum dispersion, L is the circumference of a ring, $g = l(\partial^2 B_y / \partial x^2) / B\rho$ and the suffix j means the j-th sextupole. p, q and r are integers which satisfy $n\nu_x = p$ (n = 1 or 3), $\nu_x = q$, and $\nu_x \pm 2\nu_y = r$, θ is the azimuthal angle of the ring, $Q_a = \psi_a - \nu_a \theta$, (a = x or y), ψ_a is the phase advance of betatron oscillation and $Q_{\pm} = Q_x \pm 2Q_y$. Instead of the last three equations for resonance driving terms, so-called Collins' distortin function[4] should be carefully controlled. In new SUBARU, these are $A_{1,}, B_{1,6}$ and $B_{-,2}$ and 5 families of 50 sextupoles seem enough for the correction.

3 INSERTION DEVICE AND BEAM LINE

Table 2 summarizes the ID's where λ_u , N are the length and the number of period, g and L_u are the gap height and the total length. W is the covered region of photon wave length and B is the brilliance $(photons/sec/mm^2/mrad^2/0.1\%bw)$. S-U, L-U and SC-W mean the short undulator, long undulator and superconducting wiggler, repectively. Comments on this table are a) critical photon energy and b) 0.5~0.7 GeV operation of electron beam. As seen in the table, the K values of undulators are almost higher than 1 and the harmonics will be positively used (see Fig.1).

3.1 FEL / Optical Klystron

The main aims of the hardware development in FEL are to obtain lasing in the wave region less than 200 nm and high average power in μ m region. The storage ring will be operated mainly at 0.5 ~ 0.7 GeV, because the simple calculation gives gains more than a few tens percent at the peak current of 10 A including energy widening. Normal conducting magnets are used for the undulators and dispersive section, and the length of one period is selected by

Table 2: Main parameters of new SUBARU ID's.

Туре	S-U	L-U	SC-W	FEL
$\lambda_u(mm)$	76	54	350	160
				/320
N	30	200	1	32.5/16.5
				$\times 2$
g(mm)	$25\sim$	$25\sim$	30	40
	58	44.5		
K	1.3~	$0.8\sim$	262	1.7~
	5.3	2.5		12
$L_u(m)$	2.3	10.8	0.7	5.2×2
W(nm)	8.1~	1.4~	0.1~	$200\sim$
	149	29	$0.23^{a)}$	$12000^{b)}$
В	4×10^{16}	10^{18}	7×10^{13}	

changing current connection. The phase slipping number is optimized at each wave length between 7 and 71. The distance between the mirrors, of which radius is ~ 13 m, is one fourth of the ring circumference.

3.2 Beam Line

There are 4 beam lines (BL) from ID'S and 9 BL's from BM at the bending point of 10 degrees. Table 3 shows the present category in discussion.

Purpose	Source	Energy(keV)
EUVL	BM	0.08~0.3
LIGA	BM	3
Holography & coherence	L-U	0.08~0.3
Materials creation	BM	< 1
Photo-active materials	BM	< 1
Light source R&D	FEL	0.006
X-ray microscope	L-U/S-U	0.3~0.6
Topography	SC-W	> 2
Optical elements R&D	BM	0.05~1

Table 3: Beam lines in discussion.

In this year two BL's are constructed for EUVL (extreme ultra-violet lithography) and LIGA.

4 REFERENCES

- T.Mochizuki *et al.*, "First Lasing of LEENA Free Electron Laser at LASTI", Proc. 18th International Free Electron Laser Conference, Rome, August 1996.
- [2] M. Izawa et al., Rev. Sci. Instru. 66, 1910 and 1926 (1995)
- [3] A. Ando and K.Takayama, IEEE Trans. Nucl. Sci. NS-30, 2604 (1983)
- [4] A. Ando, Paricle Accelerators 15, 177 (1984)