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Abstract 2 LCBI MODEL WITH A SPREAD IN
SYNCHROTRON FREQUENCIES

Longitudinal coupled bunch instabilities are a major obsta-

cle for the increase of beam currentin modern electron stof:

age rings. At the ESRF, threshold limits for multi-bunchFor short bunches, rigid bunch MBMs are responsible for

operation have been considerably increased by using frdocBIs. We model the beam in the storage ring\asigid

tional fillings, from about 60 mA for a homogeneous fillingbunches, obeying synchrotron equations with frequencies

to well beyond the nominal intensity of 200 mA for a fill- w,, spread over a rangiw;:

ing of one third of the circumference. The gap in the bunch . )

train induces a modulation of the cavity voltage and a sub- % T 20a7k + Witk =0 k=1...N (1)

sequent spread in synchrotron frequencies. This resultsi is the temporal displacement of bunghw.r.t. a syn-

additional Landau damping. An appropriate set of coupleghronous particle at phass;.. It is well known that

equations, which completely models the problem, has been

derived. With slight simplifications one obtains analytical On =2 Yo Wl =2 v 2

n ’ sk
formulae which still accurately describe the observed ef- ToEqo ToEo/e d7 |y,

fect. The theoretical results have been soundly confirmesistinct ., arise from a modulation afV/dr ande,.

Interaction Equations

by experiments carried out at the ESRF. An MBM giving rise to a synchrotron sideband in the
beam spectrum di + mh)wy + w can be described by
1 INTRODUCTION T(t) = Tyed@t+2mnk/h) k=1,....,N (3)

Longitudinal coupled bunch instabilites (LCBIs) ariseWheren is the MBM number,,, the complex amplitude
from the resonant coupling of multi-bunch modes (MBMs)Rndw the common complex frequency of the bunch oscilla-
with higher order modes (HOMs) in RF cavities. Avoiding!ion- Due to its high), an HOM is excited only by spectral
the resonance by tuning away the HOMs is one remedy, ri2€s néatnown. Developing the phase modulated beam
duction of the coupling by damping the HOM or staying asignal up to first order yields an expression for the HOM-
low beam currents is another. In the present paper we shoff!t@ge to be added to the energy budget of each bunch,
how, additionally, Landau damping [1] can be used in higlinear in eacti;. Using this and the ansatz (3) in (1), we
energy electron storage rings to maintain strong beam cift¢duire a system of coupled equations forgh@nd.:

rent levels. It is routinely applied at the ESRF in combina- N

tion with a dedicated temperature regulation system [2]. (—w? + j2wi, + w2 )T = jH Z L7 4)
In section 2 we use a set of coupled equations to treat the i=1

combined effect of Landau damping coming from differenwith £ = 1,..., N. Herel; is the DC current in bunch

synchrotron frequencies of the individual bunches and thidae total currentidy, = vazl I;. H is given by

strong natural synchrotron damping in a high energy stor- o

age ring. We also present methods to accurately calculate H = WHOMZHOMTOTO/e (5)

current thresholds. Section 3 gives results on the determi- ) )
nation of the frequency spread induced by the beam loadifyth Z1owm the impedance of the HOM (linac-Ohms).
due to a fractional filling. We employ this to compute the

threshold current. In section 4 we present experimental rg—'z Dispersion Relation

sults that validate our theory. Eq. (4) leads to the dispersion relation
Unless stated otherwise we use standard ESRF parame- N iHI,
ters [2], [3]. Notably the revolution time i&, = 2.8 s, 1=) — (DR)

— 2 -
the revolution frequency/(27) = 355 kHz, the energy 1 Wek — w? F 20njw

Ey = 6 GeV, the loss per turtl, = 4.75 MeV, the momen- |ts V solutionsw; are the eigenfrequencies of the system
tum compaction factow = 1.9 - 10~*, the harmonic num- (4). For small currents the; are neatws; + jd,, increas-
berh = 992, the natural damping constafit = 277 Hz  ing I, will move them. The stability limit is reached at
the mean synchrotron frequenty= ws/(2m) = 1.97kHz  the threshold currenf,, where the first of the:; becomes
and the peak cavity voltagé = 8 MV. HOMs with shunt purely real. Fig. 1 shows how the rhs of (DR) maps the
impedances up to about 4(Mhave to be considered at the positive real axis({ < w < o). As in feedback theory, the
ESRF, mainly at 500 and 910 MHz. system is instable if the critical point 1 is encircled.
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0.8]j s - T is real, we have two equations foy, andw:
osi| 7 ¢l ) .
- .\. Ith _ N Z Ik/-[th (6)
04j 1/ Y Figure 1: 20nHw \ = (wg, — w?)? + 402w?
pLsz30Hz |\ Stability traces, N .
©=>0 Lo =0 mA rhs of (DR) 0 - I (wgy, — w”) . @
™ Ruom = 2 MQ =1 (wgk — w?)? 4+ 467w35,
02 04 06 08 /1  16punches
T N . Bicom f . B They are appropriate numerically for smail
BAANG lb=101mal//  1heinstability For equally populated bunches and sufficient natural
-04j \ / z:tmhl;[ isrfﬁfgﬁg dampingw will be given approximately by the root mean
06j . A ing >0, squarew, = V' 1/N YN, w2. We write the total fre-
S - quency spread adw, and assume an even distribution in

frequencies. Then in the case of many bunches we can re-
place the sum in eq. (6) by an integral and find a simple

2.3 Eigenvalue Approach analytical formula

The eigenvalue§u;) of the matrix obtained from eq. (4) we Aws

Iin(Aws) = = 8
th( w ) H aI‘Ctan(AwsTnat/z) ( )
JHI — w2 JHI> e JHIy
iHI, jHIp — w2 - jHIN Eq. (8) is a very good approximation for solutions obtained
: : . : by the eigenvalue method or eqgs. (6) and (7), as long as
. : : - Aws/N < ws. Note that
iHI, JHI; - JHIy —w2y

—  20hws/H for Aws — 0

are related to the solutions; by i; = w? — 20njw; and Iin (Aws) 2ws (Aws n 45_n> for Aw, > 2.

it is easier to compute them than to evaluate (DR) directly. TH s

An iteration in [, yields I, as shown in Fig. 2. This .

illustrates best what Landau damping means here: becaey Aws — 0 the well known threshold formula is recov-
of the frequency spread energy is continuously transferr@ded’ for large sprgads the contributions of natural damping
from the HOM excited MBM to the other MBMs. A narrow and Landau damping add up.

band feedback on the = 0 MBM could be applied to
damp the LCBI, as is addressed in [4].

Using natural damping we are reversing this idedl: As can be perceived in fig. 3, Landau damping in con-
MBMs now damp thesingle MBM that actively partici- junction with natural damping is more effective at higher
pates in the LCBI. In fact, the MBMs that do not coupleenergies and for lower values &fizonm. For the ESRF it
back to the HOM dissipate their energy freely dueito allows an increase of the beam current by more than a fac-
Note that this scheme attackeyLCBI. tor 3. Low energy machines, however, may have difficulties
in countering strong HOMSs just by using this effect, as it
does not change orders of magnitude.

2.5 Threshold Current Calculations
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Figure 2: Evolution of they; with I,,. Eo=6GeV, param.Ryom  Rrowm =2 M, param.:Eo
Ruowm = 2 MQ, 16 bunchesA f; = 300 kHz. Figure 3:I;, (Aws) from eq. (8),fuom = 500 MHz.

3 EFFECT OF FRACTIONAL FILLINGS
2.4 Simplifications for the Calculation éf, o ] ) ]
When filling only a fraction of the storage ring circumfer-

In the worst case the crest of the HOM impedance will bence, beam loading strongly modulates the cavity voltage.
exactly on the synchrotron sideband, théis real. Know- This gives the bunches different zero motion positions (see
ing that at the threshold the dominating solutionf (DR)  fig. 4) and different synchrotron frequencies (cf. eq. (2)).
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HOMs onto a synchrotron sideband. Varying the beam cur-
rent and observing the presence or absence of longitudinal
oscillations (cf. Fig. 4) the threshold current was deter-

CC:L mined. We present some results for an LCBI due to an
* HOM at 500 MHz and MBM number 417.
Iin/m
Zero motion position 120 ,./I'"/I
100 -
1.49 ps 80 1
Figure 4: Instability in a 1/3 filling. o 7 Theory: line
Streak camera image, 154 mA, HOM at 911 MHz o Experiment: dots

The resulting increase of the instability threshold can be 20
calculated with the results of the preceding section if we 0 100 200 300 400 AfsHz

Eo =5GeV,V =4.3MV
Figure 7:1;, (A fs), theory and experiment.

have quantitative knowledge of the distribution of the.
Since the beam loading itself is influenced by the posi-
tion of each bunch, we have contrived an iterative process . — . .
which converges towards the zero motion positions of all. A direct validation of th? results in section 2 was pos-
bunches. This fix-point problem has been treated numeﬁ'—bIe at 5 GeV by operating one of the wo RF units at

cally: fig. 5 shows how the overall spread changes wWith (h+ 1)“’0_’ cf. fig. 7 and [2]. Thg sErgad in gynchrotron
and the filling ratiop. frequencies due to the modulatidkl” is obtained from

Aw/ws = (1 + tan? ¢ ) AV /(2V).
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Figure 5:Aws(p), calculated numerically. 0 €

Knowingws (I, p), we can determine the threshold cur-

Figure 8:1;,(p), theory and experiment.

rent by solving the following equation fdf,:

I, = Iin [(wsk (Iv, P))k=1,...,N]

9)

wherely, from egs. (6) or (8) is used. Fig. 6 shos(p)

Fig. 8 shows a striking confirmation of the results from
section 3. However, we experienced some deviations for
fractionsp < 0.4 on strong HOMs around 910 MHz, with
measured thresholds below theoretical predictions.

in analogy to fig. 3. Since raising the beam current in-
creases the spread of the,, self-stabilization is observed
for smaller fractions and nonviolent HOMs: Landau damp:

5 CONCLUSIONS AND OUTLOOK

A theory of Landau damping of LCBIs incorporating natu-

ing overcomes the normal LCBI growth rate for any curren

(e.g. at6 GeV fop < 0.4, if Rgom < 2 MQ).
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Figure 6:1;, (p) from eq. (9),fuom = 500 MHz.

4 EXPERIMENTAL RESULTS
The theoretical results presented so far have been verified these proceedings
by experiments at the ESRF. By means of the temper&#] R.D.Kohaupt: ‘The Theoretical Study of a New Multi-Bunch
ture control system of the RF-cavities we deliberately tuned Damping Mechanism’, Z. Phys. C 37, 159-164 (1987)

ral damping was elaborated and the spread in synchrotron
frequencies from beam loading due to fractional fillings
was computed. This was verified by experiments. Frac-
tional fillings are a simple and efficient way to fight LCBIs
in high energy storage rings, our results permit the deliber-
ate choice of the appropriate filling ratio at the ESRF [3].
However, to allow high intensity operation in homogeneous
fillings at 6 GeV, direct modulation is envisaged in the near
future [2].
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