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Abstract

In this paper we establish simple analytical criteria for the
loaded quality factors of the dipole modes in the acceler-
ating rf structures to prevent the multibunch instabilities in
electron storage rings and linear accelerators.

1 INTRODUCTION

In the modern circular and future linear colliders, the option
of multibunch operation mode has to be adopted to guaran-
tee the required luminosity. Due to the long range trans-
verse wake potentials, the transverse motion of a bunch in
a bunch train can be influenced by the precedent bunches.
If the long range transverse wake potentials are not prop-
erly controlled multibunch instabilities can occur and the
luminosity will be degraded. The classical treatment of the
multibunch instabilities can be found in ref. 1 for exam-
ple. In this paper we try to treat the problem in a different
way. We assume that each bunch is represented by a point
charge and the detailed discussion about the single bunch
longitudinal and transversal instabilities in electron storage
rings can be found in refs. 2 and 3.

A charged particle executes betatron oscillation in cir-
cular and linear accelerators can be regarded as an inde-
pendent damped linear oscillator if there is no long range
transverse wake potentials permitting the particle ”talking”
to its neighbours. The mechanisms of damping come from
the synchrotron radiation in electron storage rings and the
adiabatic acceleration in linear accelerators, respectively.
The quality factor of this oscillator is related to the damping
time and the betatron oscillation frequency. When the long
range wake potentials are strong enough the particles in the
bunch train will begin to be coupled from one to another
and the independent oscillators become a chain of coupled
oscillators with losses, and the betatron oscillation ener-
gies of the particles upstream can be transmitted to those
of the particles downstream, known as multibunch instabil-
ities. The physical picture described above is similar to that
of a coupled rf cavity chain. Now, let’s look at a chain of
coupled rf cavities with losses which has been studied in
detail in ref. 4, one finds that to prevent the coupling be-
tween cavities the criterionKcQ < 2 should be satisfied,
whereKc is the coupling coefficient in the dispersion curve
andQ is the quality factor of the corresponding mode. By
analogy, one can find the criteria under which the multi-
bunch instabilities can be prevented in storage rings and
linear accelerators.

2 MULTIBUNCH INSTABILITIES IN
ELECTRON STORAGE RINGS

Particles in a storage ring execute betatron oscillations. If
we neglect the effect of synchrotron radiation excitation
and the long range wake potentials, the betatron motion of
each bunch can be simplified as a damped oscillator ex-
pressed as

y = A cos
(
ωy

s

c

)
exp

(
− ωy

2Qy,r

(s

c

))
(1)

where y denotes the transverse deviation in horizontal
planex or vertical planez from the design orbit,ωy is
the angular betatron frequency, andQy,r (the subscriptr
denotes the storage ring case) is the quality factor of the
oscillator expressed

Qy,r =
ωyE0

< P0 > Jy
(2)

where< P0 > is the average synchrotron radiation power
for one turn,E0 is the particle energy,Jy is the radia-
tion damping partition number withJy=x = 1 − D and
Jy=z = 1 (−2 < D < 1). In reality, however, charged par-
ticles interact with the environment and produce long range
wake potentials which make the independent oscillating os-
cillator become a coupled oscillator chain. The coupling
coefficientKc,r between the two successive bunches can
be calculated from the coherent frequency change due to
the long range wake potential similar to the single bunch
case [3] ∣∣∣∣∆νy,c

νy

∣∣∣∣ = e2NeW
′
⊥(sb)βy,c

νyE0
(3)

whereW ′
⊥(sb) (V/C/m) is the long range dipole wake po-

tential of one turn and of unit transverse displacement,sb

is the distance between two successive bunches,Ne is the
particle population in the bunch,βy,c is the average beta
function at the position of the rf cavities, andνy is the tune
number. By analogy with a coupled rf cavity chain, one
finds the coupling coefficient expressed as follows

Kc,r = 2
∣∣∣∣∆νy,c

νy

∣∣∣∣ (4)

According ref. 4, one knows that under the condition

Kc,rQy,r < 2 (5)

there will be no coupling between two successive oscilla-
tors. From eqs. 2 and 4, one finds

W ′
⊥ <

< P0 > Jy

2πf0e2Neβy,c

(6)
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Figure 1: A single rf cavity.

wheref0 is the revolution frequency. For an isomagnetic
ring

W ′
⊥ <

γ4Jy

6πε0ρNeβy,c

(7)

whereρ is the local bending radius andγ is the normalized
particle energy. In a storage ring the accelerating rf cav-
ities are the main components which produce long range
wake potentials (narrow band impedance). In the follow-
ing one considers only the TM110 mode in the accelerating
rf cavities sinceW ′

⊥(sb) ≈ W ′
⊥,110(sb) for the long range

wake potential. The TM110 mode wake potential can be
expressed as

W ′
⊥,110 = Nch

2cK1
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whereNc is the number of the cavities in the ring,h is
the inner length of the cavity,σz is the rms bunch length
(σz is used to calculate the transverse wake potential and
the point charge assumption is still valid),ωrf,1 andQ1,r

are the angular frequency and the loaded quality factor of
the dipole mode, respectively. According to ref. 5,K1 in
eq. 8 corresponding to a single cavity can be expressed
analytically as follows

K1 =
J2

1

(
u11
Rc

a
)

ε0πR2
cJ

2
2 (u11)

S(x1)2 (9)

S(x) =
sinx

x
(10)

x1 =
hu11

2Rc
(11)

ωrf,1 ≈ cu11

Rc
(12)

whereRc is the cavity radius,a is the iris radius as shown
in Fig. 1, andu11 = 3.832 is the first root of the first
order Bessel function.ωrf,1 in eq. 12 can be rather pre-
cisely determined by using the analytical formulae from
perturbation methods [6][7]. Being pessimistic, we assume
sin(ωrf,1

sb

c ) = 1 and find consequently from eq. 7 that
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(14)

To reach the required loadedQ1,r, waveguide type higher
order mode couplers can be installed on the accelerating
rf cavities and the dimensions of the coupling apertures
can be determined analytically as shown in ref. 8. From
eq. 14 one can find the condition under which the dipole
mode need not to be damped. This condition is simply that
Q1,r → ∞ (this condition is somewhat strong but very use-
ful since it doesn’t depend on the specific unloaded dipole
mode quality factor) whenNe satisfies

Ne ≤ N∗
e =

γ4u11a
2Jy

12πε0ρRcNchK1βy,c exp
(
−u2

11σ2
z

2R2

) (15)

Taking Beijing Tau-Charm Factory (BTCF) parameters
for example, from eq. 14 one getsQ1,r = 99 with sb = 12
m, Rc = 0.224 m, h = 0.22 m, a = 0.044 m, K1 =
1.4×1011 (V/C/m),Nc = 12, Ne = 1.5×1011, βy,c = 10
m, σz = 0.01 m, Jy=z = 1, ρ = 8.58 m, andE0 = 2 GeV.
This result justifies what has been found in ref. 10.

3 MULTIBUNCH INSTABILITIES IN
LINEAR ACCELERATORS

In a linear accelerator the physical picture is a little bit dif-
ferent from that in a storage ring. The betatron motion can
still be written as that in eq. 1, the quality factor, however,
is expressed as

Qy,L =
ωyE0

ceEz
(16)

whereEz is the accelerating gradient and the subscriptL in
this section denotes linear accelerator case. The damping
effect is due to the fact that a particle is accelerated contin-
uously and the betatron oscillation is adiabatically damped
[9]. The relative coherent betatron oscillation frequency
variation due to the long range transverse wakefield is∣∣∣∣∆ωy,c

ωy

∣∣∣∣ = 2πe2NecW
′
⊥,L(sb)βy

ωyE0
(17)

where W ′
⊥,L(sb) (V/C/m2) is the long range transverse

wakefield strength of unit transverse displacement andβy

is the average beta function value in the linac. In the follow-
ing one considers only the TM110 mode in the accelerating
rf structures sinceW ′

⊥,L(sb) ≈ W ′
⊥,L,1(sb) for the long

range wakefield, whereW ′
⊥,L,110(sb) is the TM110 wake-

field expressed as

W ′
⊥,L,110 =

2cK1,L

ωrf,1,La2
sin(ωrf,1,L

sb

c
)×
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Figure 2: A disk-loaded accelerating structure.
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whereωrf,1,L andQ1,L are the synchronous frequency and
the loaded quality factor of the TM110 mode passband, re-
spectively, andF (s) is the wakefield reduction function
comes from the detuning effect (for a constant impedance
accelerating structureF ≡ 1). According to ref. 5, one
knows that

K1,L =
hJ2

1

(
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R a
)

ε0πDR2J2
2 (u11)

S(x1,L)2 (19)
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2R
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whereD is the period length of the accelerating structure,
h is the inner cavity length,a andR are the iris and the
cavity radius, respectively, as shown in Fig. 2. Knowing

Kc,L = 2
∣∣∣∣∆ωy,c

ωy

∣∣∣∣ (22)

and lettingQy,LKc,L < 2, one finds
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Taking sin(ωrf,1,L
sb

c ) = 1 for the pessimistic case, one
finds
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(25)
Similar to the storage ring case, one gets the condition un-
der which no higher order mode coupler is needed

Ne ≤ N∗
e =

Ezu11a
2

4πeRK1,Lβy exp
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11σ2
z
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)
F (sb)

(26)

Here we give an example of an ideal detuned S-band
linear accelerating structure. From eq. 25 one finds
Q1,L=2740 withsb = 5 m, R = 0.04 m, h = 0.0292
m,D = 0.035 m,a = 0.01 m,K1,L = 10×1012 (V/C/m),
Ne = 2× 1010, βy = 85 m,σz = 0.005 m,F (sb)=0.0065,
andEz = 17 MV/m. If a constant impedance structure is
used thenQ1,L=187 for the the same set of parameters.

4 CONCLUSION

In this paper we give simple criteria to determine the loaded
quality factors of the dipole modes in the accelerating rf
structures which are responsible for the multibunch insta-
bilities in electron storage rings and linear accelerators.
The relation between the beam and the machine param-
eters are well established, and the analytical criteria can
be served as scaling laws to optimize the machine perfor-
mance.
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