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Abstract

It has been shown that [1], the transverse head-tail instabil-
ity can be suppressed by modulating the chromaticity over
a synchrotron period. In this work, we demonstrate that
the threshold of the strong head-tail instability can be sig-
nificantly increased by the alternating chromaticity (AC).
We present results of multi-particle simulation and a new
criterion for the SHT instability.

1 INTRODUCTION

The transverse collective beam instability induced by the
coupling impedances in a storage ring has two categories:
head-tail (HT) and strong head-tail (SHT) instabilities [2].
The HT instability is generated by the chromaticity in a
ring, and has no stability threshold. The transverse SHT
instability (also known as the transverse microwave insta-
bility) occurs when the betatron tune shift is larger than the
synchrotron tune, and limits the current carrying capacity
in a storage ring. In a previous work [1], we analyzed a
new method for suppression of the HT instability by means
of variation of the chromaticity over a synchrotron period.
Both analytical and numerical studies suggest that a thresh-
old can be developed, and it can be increased to a value
larger than the standard SHT stability threshold. The un-
derlying physical mechanisms of the damping scheme are
rotation of the head-tail phase (such that the chromatic ef-
fect causing the instability is cancelled out in a synchrotron
period) and Landau damping (due to the incoherent beta-
tron tune spread generated by the alternating chromaticity.)
In this paper, we demonstrate that the AC scheme not only
provides damping for the HT instability, but also increases
the threshold of the SHT instability. Going beyond the dis-
cussions provided in Ref. [1], we provide more simulaton
results, and a new approximate SHT stability criterion.

2 DAMPING MECHANISMS

The transverse chromaticity is defined as

ξ =
∆ωβ/ωβ0

δ
, (1)

whereωβ0 is the betatron angular frequency of the on-
momentum particle, andδ = 4p/p is the relative momen-
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tum difference. With the AC scheme, the chromaticity is
assumed to vary as

ξ(s) = ξ0 + ξ1 sinφ(s), (2)

which is a function of “time”s, wheres measures the dis-
tance around the ring,φ(s) = ωss/c, ωs is the synchrotron
angular frequency, andξ0 is the constant (DC) chromatic-
ity. It is well-known that [2], the DC part of chromaticity
engenders the HT instability. The AC part is introduced
to provide an incoherent tune spread that suppresses the
coherent instability without causing additional instabilities
[1]. This incoherent chromatic tune spread can be esti-
mated as

σν ≈νβ0ξ1

√
〈δ2 sin2 φ〉=

√
3
8
νβ0ξ1σδ =

√
3
8
νsχ1, (3)

for a Gaussian beam, whereνβ0 = ωβ0/ω0, ω0 is the rev-
olution angular frequency,σδ = (ωs/cη)σz, σz is the rms
bunch length,

z = rz cosφ, δ = (ωs/cη)rz sinφ, (4)

(rz , φ) are the action-angle variables in the longitudinal
phase space, the bracket〈 〉 means a longitudinal phase-
space average, andχ(0,1) = ωβ0ξ(0,1)σz/cη is the DC(AC)
phase shift between head and tail of a bunch. The AC in-
coherent tune spread contributes to Landau damping and
decoherence. Unlike its DC counterpart, the AC part of the
chromaticity deos not lead to HT instabilities [1]. It is sim-
ply because of an otherwise accumulating chromatic effect
during the synchrotron oscillation is cancelled out if the
sign of the chromaticity is reversed within a synchrotron
period. As the alternating chromaticity contributes to Lan-
dau damping without inducing instabilities, one may use
an AC amplitude as large as possible (within the tolerance
of dynamic aperture reduction) to push up the SHT stabil-
ity threshold, so as to achieve a higher bunch current in a
storage ring.

In short, the underlying mechanisms for the AC shceme
are: Landau damping and rotation of the head-tail phase.

3 TOLERANCE

Here, we need to note that, it is known [3] that the chro-
maticity (DC part) could prevent the transverse modes from
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coupling (which the mode-coupling results in the SHT in-
stability) until a higher current limit is reached, ifξ0 is large
enough. However, the HT instability occurs whenξ0 6= 0,
and the the emittance growth could be unacceptable. By
using the AC scheme, there is no HT instability. The only
foreseeable limitaion would be the reduction of dynamic
aperture due to resonances. As the damping of the HT in-
stability (whenχ0 6= 0) by the AC scheme has been well
studied [1], we focus on the effect of a pure AC scheme,
i.e.,χ0 = 0, in the following study.

According to Eq. (1), the normalized amplitude of vari-
ation of the incoherent betatron tune due toξ1 is∣∣∣∣∆νβ

νβ0

∣∣∣∣ = |ξ1δ| ≈ ξ1σδ =
νs

νβ0
χ1. (5)

In most applications, the synchrotron tune is much smaller
than the betatron tune. Typically,νs/νβ0 ≈ 10−4 ∼ 10−3.
Assuming a lattice can tolerate0.2% variation of∆νβ/νβ0,
and if νs/νβ0 = 10−4, then the maximum AC amplitude
one can employ isχ1 = 20. A larger tolerance of dy-
namic aperture reduction on|∆νβ/νβ0| and a smaller value
of νs/νβ0 would allow a largerχ1, which would in turn al-
low a higher SHT stability limit (as will be shown.)

4 NEW APPROXIMATE SHT STABILITY
CRITERION

Let’s now define a dimensionless parameter

Υ = ∆ν/νs, (6)

which measures the ratio of the coherent betatron tune shift
(due to coupling impedances) to the synchrotron tune. This
parameter can be expressed in terms of accelerator param-
eters as

Υ = πNr0〈W⊥〉c2/8γCωβ0ωs, (7)

wherer0 = e2/m0c
2, N =

∫
dz′ρ(z′) is the number of

particles in a bunch,〈W⊥〉 = (1/N)
∫ ∞
−∞dz′ρ(z′)W (z −

z′) is the averaged bunch wake,C is the circumference,γ
is the relativistic factor. It can easily be shown that [2], by
a two-particle model, the SHT stability limit is

Υ ∼< 1, (8)

for a uniform wake function. For a realistic wake function,
which is not uniform, the criterion is still valid, except that
the bunch wake〈W⊥〉 is associated with a geometric fac-
tor. This stability threshold is consistent with the transverse
Boussard criterion [4]. Note that, here∆ν is different with
the chromatic tune shift,∆νβ , shown in Eq. (5). The imag-
inary part of the modes appears, when the real part of trans-
verse modes couple at where the coherent betatron tune
shifts approximately in the amount of synchrotron tune. In-
stabilities occurs when the mode frequencies are complex.
This qualitative description is clearly manifested by Eqs.
(6) and (8). Conversely, one can approximate the incoher-
ent tune spread generated from the synchrotron oscillation
as,σν ∼ νs, the stability limit reads

∆ν ∼< σν . (9)

Now, with the AC, the incoherent tune spread including the
AC [cf. Eq. (3)], is

σν ∼ νs(1 +
√

3/8χ1). (10)

The SHT stability threshold can then be approximately in-
creased fromΥSHT ' 1 to

ΥSHT ' 1 +
√

3/8χ1. (11)

Of course, Eq. (11) is only an estimate. A rigorous evalua-
tion of a new SHT instability threshold, for the AC scheme,
should be obtained from the complete dispersion relation,
in which Landau damping is included by the method of sin-
gular eigenfunction expansion. In this way, the eigenvalues
of the azimuthal mode are exactly computed, and the new
thresholdΥSHT is where the modes couple. Detailed for-
mulation can be found in Ref. [1]. Exact calculation of the
azimuthal mode coupling is underway.

5 MULTI-PARTICLE SIMULATION

A simulation code has been developed, which follows the
motion of macro-particles that are initially loaded with a
bi-Gaussian distribution in both longitudinal and transverse
phase spaces. The transverse (for either vertical or horizon-
tal) equation of motion for a particle in a bunch is

y′′(z, s) +
ω2

β(δ)
c2

y(z, s)

= − r0

γC

∫ ∞

z

dz′ρ(z′)W⊥(z − z′)y(z′, s), (12)

wherey (z) is the transverse (longitudinal) oscillation am-
plitude with respect to the bunch center, and′ = d/ds. The
longitudinal motion is prescribed by Eq. (4). Eqs. (4) and
(12) are transformed into a 4-D map for particle’s longitu-
dinal and transverse motions.

Specifically, the code simulates a bunched beam travers-
ing a ring with a transverse impedance. The momentumPy

is changed by the kick of the transverse wake force, where
Py = (c/ωβ0)y′. Particle’s betatron oscillation is carried
out by a rotation matrix, whereωβ(δ) = ωβ0(1+ξ1δ sinφ)
is used for the betatron angular frequency. A uniform trans-
verse wake function is used. No longitudinal wake force
is included. Results are numerically converged when the
number of macro-particles simulated is larger than 400.
Numerical values of accelerator parameters used in the sim-
ulations can be found in Ref. 1. In general, only two param-
eters are important to the dynamics studied in this work:Υ
andχ1, which provide scaling laws for accelerator param-
eters.

The curve of〈y〉 presented in this paper is the bunch
centroid motion averaged over a synchrotron period. It is
defined as

〈y〉(τn) =

[
1

2Ns + 1

τn+Ns∑
i=τn−Ns

ȳ2(i)

]1/2

, (13)

ȳ(i) =
1

Nm

Nm∑
m=1

ym(i), (14)
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whereNm is the number of macro-particles used in the
simulations,τn is the number of turn, andNs is the integer
part of1/νs. The curve ofεrms presented in Fig. 1(b) is
the rms emittance of the phase spacePy vs. y.

In Figs. 1, we show the simulation results for the stabi-
lization of the SHT instability by a large enoughχ1, when
Υ = 1.65 andχ0 = 0. In Fig. 2, simulation results of
the excitation of〈y〉 andεrmsat the 8000th turn are shown
in theχ1 vs. Υ space. It can be clearly seen that, the ex-
citations of the bunch centroid and emittance, due to the
SHT instability, are significantly suppressed when the AC
scheme is implemented. Largeχ1 gives large reduction
of the instability growth. Simulation results of the bunch
centroid motion agree with the approximate SHT stabil-
ity threshold [cf. Eq. (11)]. A noteworthy implication
of Fig. 2 is that, although the bunch centroid motion is
stabilized whenχ1 exceeds the threshold value estimated,
the emittance growth requires a much largerχ1 such that
the level of growth is acceptable. As large requirement of
χ1 involves tolerance of dynamic aperture reduction, toler-
ance of emittance growth when operating above the stan-
dard SHT threshold will thus rely on tolerance of dynamic
aperture reduction. These tolerance depend on practical ap-
plications, and are left for future studies.

6 CONCLUSION

We have shown that, by using the AC scheme, the SHT sta-
bility threshold can be increased by the AC scheme, and
the bunch excitations of the centroid motion and the emit-
tance growth due to the SHT instability are significantly
suppressed. The underlying mechanisms are Landau damp-
ing and rotation of the head-tail phase. The tolerance of
dynamic aperture reduction is discussed in terms of the AC
part of the head-tail phaseχ1. Simulations for the bunch
centroid motion agrees with the approximation of the new
SHT stability threshold.
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Figure 1: Multi-particle simulation results showing stabi-
lization of the SHT motions of (a) the centroid, and (b) the
rms-emittance of a Gaussian beam byχ1, where the stan-
dard SHT stability limit isΥSHT = 1 (whenχ1 = 0.) In
these figures,χ0 = 0, Υ = 1.65. According to Eq. (11),
whenχ1 = 1.2, ΥSHT = 1.73.
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Figure 2: Simulation results of the bunch exciations when
Υ is above the SHT stability limit. The numerical values
attached beneath the points (*) are(〈y〉,∆εrms), where〈y〉
is the averaged centroid motion at the 8000th turn, and
∆εrms = εrms(8000)/εrms(0). The approximate new
stable limit (the solid line) are plotted according to the cri-
terion estimated in Eq. (11). The region above the solid line
is stable for the bunch’s centroid motion. Whenχ1 = 0, the
standard SHT stability limit isΥSHT = 1.
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