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Abstract

In this paper, concerning the fast single bunch transverse
instability, it is believed that the elimination of the Lan-
dau damping is the cause of this type of instability different
from the mode-coupling theory. An analytical expression
for the threshold current is established.

For a storage ring collider, it is analytically proved that
there exists a maximum beam-beam tune shiftξy,max. The
analytical expression ofξy,max is established.

1 INTRODUCTION

The single bunch collective effects in the transverse planes
of an electron storage ring can cause fast transverse insta-
bilities when the bunch current surpasses a distinct thresh-
old value. In section 2, the mechanism of this instability
is shown to be the elimination of the Landau damping and
the corresponding analytical expression of the bunch cur-
rent threshold is established. In section 3, we will show
why there exist a maximum beam-beam tune shift in an
electron storage ring collider, and an analytical expression
for the maximum beam-beam tune shift is given.

2 SINGLE BUNCH FAST TRANSVERSE
COLLECTIVE INSTABILITY

In an electron storage ring the maximum single bunch cur-
rent is usually limited by a fast transverse bunch size blow-
up in the vertical plane when the single bunch current
passes an obvious threshold as was observed in PETRA [1]
and the other machines. Nowadays, the theoretical expla-
nation to this phenomenon is based on the so-called trans-
verse mode coupling theory originally proposed by Ko-
haupt [1] and enriched by many others [2][3][4]. However,
the stability criterion is very empirical and there are still
some ambiguities on the description of the physical pic-
tures. In this section we try to give another explanation to
this single bunch transverse collective instability based on
the principle of Landau damping.

In a real particle accelerator the mechanism of Landau
damping guarantees the stability of the coherent motion of
the ensemble of particles in a bunch. The mechanism of
Landau damping, however, can be destroyed if the coher-
ent oscillation frequency is shifted outside of the spectrum
of the incoherent oscillation frequencies of the ensemble
of particles, which is believed to be just the case for the
single bunch transverse collective instability. To describe
mathematically the process let’s look at the vertical beta-
tron oscillation which is more problematic than that in the
horizontal plane. Ignoring the variation ofβy with s, one

may write
y = Bcosφ (1)

y′ = − B

βy
sinφ (2)

whereφ = s/βy and y′ = P⊥/P0. The energy of the
coherent vertical betatron oscillation is therefore expressed
as

E⊥ =
yc

βy
E0 (3)

were yc denotes the amplitude of the collective betatron
oscillation andE0 is the particle energy. The shift of the
coherent betatron oscillation frequency can be calculated
by using Boltzmann and Ehrenfest theorem which states
that for a periodical and linear working lossless engine, the
product of energy and the period time is invariant for adia-
batic deformation [5], and one has

∆νy,c

νy
=

∆E⊥
E⊥

(4)

whereνy = fy/f0, fy andf0 are the vertical betatron and
the revolution frequency, respectively. The energy variation
in eq. 4 can be easily calculated by using the concept of
transverse loss factorKtot

⊥ of the storage ring over one turn,
and

∆E⊥ =
e2NeKtot

⊥ (σz)yc

νy
(5)

whereNe is the particle number in the bunch andσz is the
bunch length. Combining eqs. 3, 4, and 5, one has

∆νy,c = −e2NeKtot
⊥ (σz) < βy,c >

E0
(6)

whereβy has been replaced by< βy,c > which is the
average beta function in the rf cavity region where the
transverse wakefield is more important. The dispersion of
the incoherent vertical betatron oscillation frequency is ex-
pressed as

σνy,inc = |ξc,y|νy
σε0Rε

E0
(7)

whereσε0 is the natural energy spread,Rε = σε/σε0 and
ξc,y is the chromaticity in the vertical plane (usually posi-
tive to control the head-tail instability). To shift the coher-
ent frequency totally out of the incoherent frequency spec-
trum, one needs

∆νy,c = −4σνy,inc (8)

and one gets finally the instability threshold current

Ith
b,fast =

4fyσε0Rε|ξc,y|
e < βy,c > Ktot

⊥ (σz)
(9)
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In fact Rε andKtot
⊥ (σz) are the functions ofIb, eq. 9,

therefore, should be solved in a consistent way. It is useful
to expressKtot

⊥ (σz) asKtot
⊥ (σz) = Ktot

⊥,0/R
Θ
z , whereKtot

⊥,0

is the value at the natural bunch length,Rz = σz/σz0,
andΘ is a constant. The variations ofRε andRz with
respect to the bunch currentIb can be obtained by solving
longitudinal single bunch motion as shown in ref. 6. It is
important to note that by increasing the chromaticity one
can push the threshold bunch current upwards.

The threshold current from the coupling mode theory is
shown as follows [3][4]

Ith
b,coupling =

FfsE0

e < βy,c > Ktot
⊥ (σz)

(10)

The difference between eq. 9 and eq. 10 comes from that
the mode coupling theory requires∆νy,c = Fνs instead of
∆νy,c = −4σνy,inc , whereF is a variable depending on
the bunch length.

Now we take the parameters of Super-ACO for example.
Using< βy,c >= 5 m,E0 = 800 MeV, νy = 1.7, ξc,y = 1
andKtot

⊥,0 = 303(V/pC/m)/RΘ with σz0 = 2.4 cm and
Θ = 0.7 [7], it is found thatIth

b,fast = 140 mA as shown in
Fig. 1.
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Figure 1: The fast transverse instability is caused by the
elimination of the Landau damping (the coherent oscilla-
tion frequency is shifted out of the spectrum of the inco-
herent oscillations).

3 INCREASE OF THE TRANSVERSE BUNCH
DIMENSIONS DUE TO BEAM-BEAM EFFECT

AND THE MAXIMUM TUNE SHIFT

The luminosity of a circular collider can be expressed as

L =
Ibeamγξy

2ereβ∗
y

(
1 +

σ∗
y

σ∗
x

)
(11)

wherere is the electron radius,β∗
y is the beta function value

at the interaction point,γ is the normalized particle energy,
σ∗

x andσ∗
y are the bunch transverse dimensions after the

pinch effect, respectively,Ibeam is the circulating current
of one beam, and

ξy =
Nereβ

∗
y

2πγσ∗
y(σ∗

x + σ∗
y)

(12)

is the vertical beam-beam tune shift. Experiments show
that when the bunch current is larger than a certain thresh-
old ξy will not be able to surpass a maximum valueξy,max.
In the following we try to explain this phenomenon and
give an anlytical expression forξy,max.

At each interaction point particles in a bunch will be de-
flected transversely by the counter-rotating bunch. Accord-
ing to the linear theory of beam-beam dynamics [8], one
knows that for two equal charge Gaussian bunches after
each collision, the average beam-beam kicks of each parti-
cle in the horizontal and the vertical planes are expressed
as follows

δx′ = − 2Nerex

γσ∗
x,+(σ∗

x,+ + σ∗
y,+)

(13)

δy′ = − 2Nerey

γσ∗
y,+(σ∗

x,+ + σ∗
y,+)

(14)

whereσ∗
x,+ andσ∗

y,+ are the bunch transverse dimensions
just before the interaction point. In fact, these kicks are
random and they will move the zero-current equilibrium
transverse beam sizes to the new values which depend on
the bunch current.

Let’s look first at the horizontal plane. Following the
arguments in ref. [9], the betatron oscillation is described
as follows

x = a
√

βx cosφ (15)

with

a2 =
1

βx,s
{x2

s + (βx,sx
′
s −

1
2
β′

x,sxs)2} (16)

where the subscripts denotes an arbitrary longitudinal po-
sition. At the positions there are sudden changes forxs and
x′

s due to the synchrotron quantum radiation excitations:

δxs = −D(s)
up

E0
(17)

δx′
s = −D′

s

up

E0
(18)

whereD(s) is the dispersion function andup is the energy
of one synchrotron radiation photon. Summing all the ex-
citations up, the natural horizontal emittance is found to be

εx0 =
τxQx

4
(19)

where

Qx =
< Np < u2

p > H(s) >

E2
0

(20)

H(s) =
1

βx,s
{D(s)2 + (βx,sD

′
s −

1
2
β′

x,sD(s))2} (21)

and

τx =
2E0

Jx < Pp >
(22)

whereJx is the damping partition number,Np is the local
rate of synchrotron photon emission, and< Pp > is the
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average synchrotron radiation power for one turn. For the
vertical plane, similarly, one gets

εy0 =
τyQy

4
(23)

where

Qy =
< Np < u2

p > βy(s) >

2γ2E2
0

(24)

and

τy =
2E0

< Pp >
(25)

Assuming that there areNIP interaction points in the
machine, if one includes in eq. 18 theNIP independent
random kicksδx′ expressed in eq. 13 (similarly in the ver-
tical plane), one gets the new equilibrium horizontal and
vertical emittances

εx = εx0

(
1 − (e2NeKIP,BB,x)2NIP τx

4T0E2
0

)−1

(26)

and

εy = εy0

(
1 − (e2NeKIP,BB,y)2NIP τy

4T0E2
0

)−1

(27)

whereT0 is the revolution period, and

KIP,BB,x =
β∗

x

2πε0σ∗
x,+(σ∗

x+ + σ∗
y,+)

(28)

KIP,BB,y =
β∗

y

2πε0σ∗
y,+(σ∗

x,+ + σ∗
y,+)

(29)

For an isomagnetic ring, one gets

εx = εx0

(
1 − 3ε0R(eNeKIP,BB,x)2NIP

2m0c2γ5Jx

)−1

(30)

and

εy = εy0

(
1 − 3ε0R(eNeKIP,BB,y)2NIP

2m0c2γ5

)−1

(31)

whereR is the local bending radius.
For a flat bunch (σ∗

y,+ << σ∗
x,+), from eq. 31 one knows

that

σ∗
x,+σ∗

y,+ >

(
3RNIP (eNeβ

∗
y)2

8π2ε0m0c2γ5

)1/2

(32)

Defining

H =
σ∗

x,+σ∗
y,+

σ∗
xσ∗

y

(33)

whereH is a measure of the pinch effect. Keeping in mind
the physics of beam-beam effect at the interaction point,
one can write

H =
H0

√
NIP

γ
(34)

Combining eqs. 12, 32 and 34 one gets finally

ξy ≤ ξy,max =
H0

2πγ

√
T0

τy
(35)

or, for an isomagnetic case

ξy ≤ ξy,max = H0

√
γre

6πR
(36)

We have therefore found the analytical expression for
ξy,max and explained the well-known phenomenon in cir-
cular colliders thatξy ≤ ξy,max. From eq. 35 it is clear that
for fixed γ andT0, ξy,max ∝ 1/

√
τy. The experimentally

reached maximumH0 is found to be about16 ×106. In fact,
eqs. 35 and 36 are valid for the round beam also.

By using eqs. 35 or 36,ξy,max can be calculated instead
of assumed when a new machine is designed. Taking Bei-
jing Tau-Charm Factory parameters for example [10], one
finds ξy,max = 0.043 with R = 8.58 m andγ = 3914
(2GeV).

4 CONCLUSION

A new current threshold expression for the fast transverse
instability is established based on the concept of the elimi-
nation of the Landau damping which shows the dependance
of the threshold current on the chromaticity. For a stor-
age ring collider, it has been proved analytically that there
exsits a maximum value for the beam-beam tune shift, and
an analytical formaule is given for theξy,max.
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