
ORBIT – A RING INJECTION CODE WITH SPACE CHARGE *

J. Galambos, S. Danilov, D. Jeon, J. Holmes, D. Olsen, ORNL, Oak Ridge, TN
J. Beebe-Wang, A. Luccio, BNL, Upton, NY

* SNS research is sponsored by the Division of Materials Science, U.S. DOE, under contract number DE-AC05-96OR22464 with
LMER Corp. for ORNL.

Abstract

ORBIT (Objective Ring Beam Injection and Tracking) is
a new particle tracking code for rings. Modelling
capabilities include H- foil injection mechanisms,
longitudinal and transverse space charge effects, and
second order matrix transport. Additional code features
include a programmable interactive driver shell, and
interactive plotting.

1 INTRODUCTION
ORBIT, Objective Ring Beam Injection and Tracking, is
a new C++ code developed for the Spallation Neutron
Source (SNS) project to build the most intense pulsed
neutron source. The code includes H- foil injection
modelling features needed to simulate realistic injection
scenarios. Because the SNS project will produce intense
pulses, 1-2x1014, of low energy protons, 1 GeV, and is
concerned with keeping uncontrolled beam losses to less
than 1 part in 104, space charge models are provided to
calculate beam halo, allowing minimisation of losses. The
general code features are described, and some example
calculations are shown. A more detailed description of
using the code is given in a ORBIT User Manual [1].

2 FEATURES

2.1 Driver Shell
ORBIT is written in C++, and uses an interactive
programmable driver shell [2], which can access variables
and routines in the compiled accelerator modules.
Additionally the driver shell allows the introduction of
interpreted code for specific applications. Input files are
scripts (in C++ syntax) which set-up the problem by
appropriate variable initialisation, and routine calls and
contain a combination of interpreted code and calls to
compiled code. Because the driver shell is programmable,
the tools provided in the compiled accelerator modules
can be used together in a generalised fashion, and there
are few predetermined execution flow paths. Input files
are actually small programs. A portion of a typical input
script is show in Table 1, illustrating some driver features
such as mixing interpreted and compiled code.

2.2 Accelerator Classes
The accelerator modelling is structured in an object-
oriented manner, based on two fundamental classes. First

there is a MacroPart class which contains information
about a “herd” of macro-particles being tracked. Also
there is a Node class, which includes information about
different actions that macro-particles may experience as
they traverse about the ring. Examples of Node sub-
classes are shown in Table 2. The Node class objects are
related to the MacroPart classes in that they accept a
MacroPart reference as an argument. This arrangement
facilitates easy implementation of tracking multiple herds
simultaneously. This is useful, for example, in some of
the diagnostic procedures which are provided. The class
structure is described in more detail in the ORBIT User
Manual [1]. In setting up a ring for a particular run, the
nodes may be put together in a general fashion.

Table 1: A portion of an input script for an ORBIT run.

///////////////////////////////////////
// Add a non-accelerating RF Cavity //
///////////////////////////////////////
 Real tFactor;
 Integer nRFHarms = 1;
 RealVector volts(nRFHarms),
 harmNum(nRFHarms), RFPhase(nRFHarms);
 harmNum(1) = 1; RFPhase(1) = 0.;

// make a new interpreted routine:
 Void PSRVolts()
 {
 tFactor = time/0.825;
 if(tFactor > 1.) tFactor = 1.;
 volts(1) = 8. + 9. * tFactor;
 }
// call a compiled routine:
 addRampedRFCavity("RF 1", 75, nRFHarms,
 volts, harmNum, RFPhase, PSRVolts);

// change a “compiled” variable:
 nLongBins = 64;

2.3 Modules and Other Features
Each of the accelerator classes in Table 2 represents an
abstraction of an accelerator simulation action and is
included in a separate module. Each module has an
interface and an implementation. The interface describes
how the module appears to a user, i.e. which variables
and routines can be manipulated from the shell. The
implementation contains the actual algorithms. The ability
for the driver shell to communicate with specific module
variables and routines is achieved by pre-processing the
interface during the code build.
 The code also includes features for flexible output and
interactive plotting, either X-window or postscript. No
proprietary software is used, but several freely available

0-7803-5573-3/99/$10.00@1999 IEEE. 3143

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

packages are incorporated. ORBIT has run on LINUX
(Pentium PCs and DEC alpha’s), Digital UNIX, IBM and
SUN workstations. Typical run times for full space charge

treatments are about 16 hours to simulate 1200 turn
injection of the SNS accumulator ring using 100,000
macro-particles and 480 azimuthal steps per turn.

Table 2: Node classes in the ORBIT code. Indented entries represent sub-classes.
 Node Class Description
 Transfer Matrix

 1st order
 2nd order*

 Fundamental transport mechanism, using externally generated matrices from
MAD.

 Used for linear tracking.
 Used for tracking at 2nd order.

 Acceleration
 RFCavity

 RampedBAccel*

 Provides energy kicks due to an RF cavity.
 Used for non-accelerating RF structures.
 Used for accelerating RF structures.

 For synchronous particle acceleration, with a prescribed B and Voltage ramp.
 Longitudinal Space Charge

 FFTLSpaceCharge
 Gives a longitudinal space charge kick.

 Use an FFT method, and optionally includes wall impedance effects.
 Transverse Space Charge

 PWSum
 BrueForcePIC
 FFT-PIC

 Gives a transverse momentum kick from space charge.
 Calculate the space charge force using pairwise sum over macro-particles.
 Calculate the space charge force using a brute-force PIC.
 Calculate the space charge force using an FFT PIC implementation.

 Bump Moves the closed orbit up (or down) as a function of time.
 Foil H- source, and scattering element. Also calculates foil traversals.
 Aperture

 RectAperture
 Either counts hits at a prescribed position, or removes macro-particles.

 For a rectangular shaped aperture.
 Thin Lens

 ThinMPole*
 Provides macro-particles with a thin lens kick.

 Generalised multipole kick..
 Diagnostic

 MomentNode
 StatLatNode
 PMTNode

 LongMountainNode

 Calculates diagnostic properties for a macro-particle herd.
 Calculate moments of a herd.
 Calculate the statistical lattice parameters.
 Poincare-Moment-Tracking – dumps the particle coordinates of a test herd,

every “core oscillation” of the main herd.
 Dumps the longitudinal histogram for a herd.

 * These capabilities have been installed and are undergoing testing.

3 EXAMPLE CALCULATIONS
This section illustrates some examples of calculations that
can be performed with ORBIT. By no means is it an
exhaustive set of examples.

3.1 Injection Painting
 Figure 1 shows an example of transverse and longitudinal
phase space distributions resulting at the end of a
programmed closed orbit bump painting, with no
transverse space charge. These plots illustrate the built-in
plotting capabilities. The hollow horizontal phase space
profile was produced by a programmed closed orbit bump
that spent more time injecting at the outer regions of x
than for the inner regions of x.

3.2 Space Charge
 Figure. 2 shows an example of a tune spread “necktie”
diagram calculated by ORBIT with space charge at the
end of injection. The tunes were calculated by the tune
diagnostic and subsequently dumped to a file. Then this
tune plot was created by an auxiliary plotting application,

gnuplot. There are many built-in methods for dumping
information to files, and it is also possible to perform
customised data dumps from input script files by creating
new output streams on the fly. Another example of a
space charge diagnostic is a beam quadrupole moment
shown in Fig. 3. This diagnostic shows the beam
quadrupole moment for two different beam intensities
during three turns at the end of injection. This is an
example of a “high frequency” diagnostic. These moment
diagnostics, as well as other diagnostics can also provide
information at lower frequency, such as, once a turn. As
indicated in Table 2, there are many diagnostic tools
provided to understand the behaviour of the transverse
space charge effects.

 Finally in Fig. 4 we show an example of a benchmark
comparison of simulated and experimentally observed
beam profiles. This is a simulation of a Proton Storage
Ring case, and is described in detail in Ref. [3]. Figure 4
shows the experimentally observed vertical beam profile,
the simulated beam profile, and the simulated profile
neglecting space charge effects. The simulated profile

3144

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

agrees fairly well with the experimentally observed
profile, but the agreement is not good if space charge
effects are neglected. The ORBIT code is available at
http://www.ornl.gov/~jdg/APGroup/Codes/Codes.html .

4 REFERENCES
1. J. Galambos, J. Holmes, D. Olsen, “ORBIT User

Manual, V.1.0”, SNS-ORNL-AP Tech. Note 11,
March 1999.

2. S. W. Haney, “Using and Programming the
SuperCode”, UCRL-ID-118982, Oct. 1994.

3. J. Galambos, S. Danilov, D. Jeon. J. Holmes, D.
Olsen, F. Neri, M. Plum, SNS/ORNL/AP Tech. Note
009.

 Figure 1. Example ORBIT plots for transverse, upper, and
longitudinal, lower, phase space distributions, calculated
at the end of a programmed injection bump.

 Figure 2. Transverse tune spread “necktie” information
calculated by ORBIT at the end of injection.

 Figure 3. Example of the beam quadrupole moment
verses position for three turns around the PSR ring near
the end of injection, for two different intensities.

 Figure 4. Comparison of calculated and measured PSR
beam profiles. Inclusion of space charge is crucial to
matching the observed profiles

3x1013 Protons

0

500

1000

1500

2000

2500

3000

3500

-30 -20 -10 0 10 20 30

Vertical Position (mm)

A
rb

itr
ar

y
U

ni
ts

Experiment
Calc, with SC
Calc, No SC

3145

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

