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Abstract

We use an equivalent circuit to model awaveguide damped cav-
ity. Both exponentially damped and persistent[1] (decay t~3/2)
components of the wakefield are derived from this model. The
result shows that for a cavity with resonant frequency a fixed
interval above waveguide cutoff, the persistent wakefield am-
plitude is inversely proportiona to the external ¢ value of the
damped mode. The competitionof thetwotermsresultsinan op-
timal @ value, which givesaminimumwakefield asafunction of
the distance behind the source particle. The minimum wakefield
increases when the resonant frequency approaches the waveg-
uide cutoff. The results agree very well with computer simula
tion on ared cavity-waveguide system.

[. Introduction

Waveguide damping as a means to limit beam emittance
growth due to the long range wakefield has received extensive
study. The effectiveness of this procedure has typicaly been
assessed by evaluating the resultant ).,; of higher order cav-
ity modes, thereby determining their exponential damping rate.
Kroll and Lin[ 1] have pointed out another type of wakefield (per-
sistent wakefield) associated with waveguide damping, which
decaysast—3/2.

We use an equivaent circuit modd of a single mode cavity
with waveguide damping to obtain an expression for the ampli-
tude coefficient of the persistent term relative to that of the ex-
ponentially damped term. This expression is proportiona to %
with acoefficient which depends only upon the resonant and cut-
off frequencies. It shows that the total wakefield at a fixed time
delay isminimized by an optimum rather that minimum @) value.

[1. Circuit Model
The circuit moddl isshowninFig. 1. L; and C; form aloss-
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Figure. 1. Thick line represents atransmission line. L, C', L,
are understood as distributed quantities.

less resonant circuit to mimic the cavity. The transmission line
with shunt inductance L, mimics the waveguide. We note that

*Work supported by U.S. Department of Energy grant DE-FG03-93ER40759
and contract DE-ACO03-76SF00515

while L and C are inductance and capacitance per unit length,
respectively, L, isinductance times unit length.
A. Transmission Line with Shunt Inductance

The differential equations of the transmission line with shunt
inductance are
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Combining Egs. 1 with 2, we obtain a single equation
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involving V" only.

For aperiodic (e~***) field, thesolutionsare V' ~ ¢+ with
k =V LC\/w* — z—. From Eq. 1, the voltage and current of
the transmission line mode must be related by
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where the + sign depends on the direction of the propagating

waves. plusfor positive z direction, negative for the other, and
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B. Resonator with Transmission Line Loading

The differential equation of the voltage 1, and current 7; of
the cavity followsthe familiar equations of capacitance and in-
ductance:
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where ¢ isthe charge on the capacitor C'.

Thecircuit isset up to haveinitial conditionsV; (¢ = 0) = vy
and I, (t = 0) = 0. V4 isregarded as the longitudinal wakefield
and /; as(proportional to) thetransverse wakefield of the cavity.

Multiplying Egs. 5 and 6 by ¢!, integrating from¢ = 0 to
t — oo, and taking theinitial conditionsexplicitly into account,
we find
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where”symbolizesthe Fourier transform. We al so used theresult
from the previous section in writing I as % on the second line
of Eq. 7. Solvingfor V;, wefind
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wherew, = \/ﬁ isthenatural resonant frequency of the cav-
ityand R = é—i isthe characteristic impedance of the cavity

resonant mode. R
The Fourier transform of the transverse wakefield (17,) is
given by
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where( isarea geometricfactor (with dimension of impedance)
related to the shape of the structure and not given by our model.

C. Transverse Wakefield
The transverse wakefield in the time domain
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is obtained from the inverse Fourier transform. The integrand
has two branch points from the definition of 2 (Eq. 4). We
choose the branch and integration contour shown in Fig. 2 [2].
Theintegrationisnaturally divided intotwo terms: onefromthe
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Figure. 2. Contour for Calculating V'

pole contribution, the other from the branch cut integral.

When % < 1, i.e. the damping term is small, the pole of
the expression V. isvery closetow,. For the purpose of calcu-
lating the pole and evaluating the residue, 7 (w) can be taken as
7 (wg). Then the poles satisfy

w 1 1

(w_o) |pole: /1 - @ - @, (11)

where Q = ﬂ%l.
The branch cut integral (persistent wakefield) is evaluated
withEg. 2and 4in[1]. Whent’ >> 1. Thetotal wakefield is
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wheret’ = wyt.

Itisclear from the above expression that the persistent wake
amplitude is proportiona to £, which means that a stronger
damping producesalarger persistent wake. It aso pointsout that
as the resonant frequency gets closer to the waveguide cut-off,
the persistent wake is enhanced.

Eq. 12 aso tells us the best waveguide damping can do at a
certain distancet’ behind the source particle. A typical valuefor
NLCist’ = 40 * m, i.e. 20 wavelengths away.

If we ignore the oscillating factor sin, cos, the sign and take

1_1 — =~ 1inEq. 12, itisagood approximationto regard the
sum athhe maxima of the oscillating amplitude of 1/, . Thusthe
wakefield can be written as
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We plot b as afunction of Z—D inFig. 3.
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Figure. 3. The horizontal axisis 2=, thevertical axisrepresents
b.

At agivent’, the minimum wakefield occurs if
I 2 logt’ —logb
2Q v ’

i.e. decreasing Q beyond thisvalueincreases thewakefield at ¢'.
The optimum @ as afunction of ¢’ isplottedin Fig. 4.

Substituting Eqg. 14 into Eq. 13, The value of the minimum
wakefield at ¢’

(14)

pymin = Wot’_2'5(5blogt/ +b—2blogh). (15)

isobtained. Fig. 5 displaysthe minimum wakefield asafunction
of ¢’ for afew values of b.

[11. Numerica Comparison

We have made a few MAFIA simulations on the geometry
showninFig. 6. Itisa2-D structurewith thebeam passinginthe
Z direction. Taking the symmetry into account, only aquarter of
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Figure. 4. Thehorizonta axisist’ = w.t, and thevertica isthe
optimum @ value
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Figure. 5. The horizontd axisist’ = w.t. The vertica axisis
the minimum wakefield achieved as aratio to the wakefield at
t =

the structure with the electric boundary condition on the Y axis
and the magnetic boundary on the X axis has been shown. We
have calculated the persistent wake amplitude and the damped
wake amplitude from the time domain beam excitation. Thera
tio of the persistent wake amplitude to the damped wake ampli-
tude from the actua cavity waveguide system is compared with
the prediction of Eq. 12in Tablel.

Four cases wererun, onewith w = 0.25,¢ = 0.05. The sec-
ond case hasw = 0.25 and ¢ = 0.25. The thirdis the same as
the second except that the waveguide is 1.1 times larger (other
dimensions do not scale with thewaveguidewidth.). Thefourth
one has the same parameters as the second except w = 0.35.

Thecircuit model andthe MAFI A resultsagree very well con-
sidering how simplethe circuit model is. The circuit model can
be expected to hold only when asingledecaying mode dominates
the spectrum near the waveguide cutoff. The discrepancy at high
@ valueisattributed to inadequate satisfaction of thiscondition.

Figure. 6. Waveguide damped cavity. Thebig dot representsthe
beam passing in Z direction.

MAFIA result | Theory | Case
Q =3.94, 2= =0.776 217 2.19 1
Q =6.72, 5= = 0.776 117 1.28 2
Q =734, 5= =0.705 0.587 0.659 3
Q@ =120, 5= =0.731 0.351 0.503 4
Tablel

Theratio of the persistent wake amplitude to the damped wake
amplitude is compared between MAFIA simulation and the
circuit model.

V. Cavity and Waveguide Detuning

For a single damped cavity, Eq. 15 presents the limit of the
transverse wakefield. In the case of a multi-cell structure, the
wakefield can be further reduced by detuning in analogy with
dipole mode detuning.

Inan optimally damped system, the dipol efrequency (w) and
the waveguide cut-off are detuned in proportionin each cell in
a Gaussian profile to produce the fastest and the most persi stent
fal off. Ina N cell structure, detuning usually resultsin awake-
field whichis % of that of asingle cell.

Taki ng a 100-cell structure for example, with¢’ = 407 and
e 15, the minimum wakefield of asinglecell is6.0 x 10~
timesthat of an undamped cavity. With detuning, thefinal wake-
field isdown to afew partsin amillion.
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