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Abstract

We use an equivalent circuit to model a waveguide damped cav-
ity. Both exponentially damped and persistent[1] (decay t�3=2)
components of the wakefield are derived from this model. The
result shows that for a cavity with resonant frequency a fixed
interval above waveguide cutoff, the persistent wakefield am-
plitude is inversely proportional to the external Q value of the
damped mode. The competitionof the two terms results in an op-
timalQ value, which gives a minimum wakefield as a function of
the distance behind the source particle. The minimum wakefield
increases when the resonant frequency approaches the waveg-
uide cutoff. The results agree very well with computer simula-
tion on a real cavity-waveguide system.

I. Introduction

Waveguide damping as a means to limit beam emittance
growth due to the long range wakefield has received extensive
study. The effectiveness of this procedure has typically been
assessed by evaluating the resultant Qext of higher order cav-
ity modes, thereby determining their exponential damping rate.
Kroll and Lin[1] have pointed out another type of wakefield (per-
sistent wakefield) associated with waveguide damping, which
decays as t�3=2.

We use an equivalent circuit model of a single mode cavity
with waveguide damping to obtain an expression for the ampli-
tude coefficient of the persistent term relative to that of the ex-
ponentially damped term. This expression is proportional to 1

Q

with a coefficient which depends only upon the resonant and cut-
off frequencies. It shows that the total wakefield at a fixed time
delay is minimized by an optimum rather that minimumQ value.

II. Circuit Model

The circuit model is shown in Fig. 1. L1 and C1 form a loss-
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Figure. 1. Thick line represents a transmission line. L, C, Ls
are understood as distributed quantities.

less resonant circuit to mimic the cavity. The transmission line
with shunt inductance Ls mimics the waveguide. We note that
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while L and C are inductance and capacitance per unit length,
respectively, Ls is inductance times unit length.

A. Transmission Line with Shunt Inductance

The differential equations of the transmission line with shunt
inductance are
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Combining Eqs. 1 with 2, we obtain a single equation
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involving V only.
For a periodic (e�i!t) field, the solutions are V � e�ikx, with

k =
p
LC

q
!2 � 1

CLs
. From Eq. 1, the voltage and current of

the transmission line mode must be related by
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where the � sign depends on the direction of the propagating
waves: plus for positive x direction, negative for the other, and
!2
c = 1

CLs
.

B. Resonator with Transmission Line Loading

The differential equation of the voltage V1 and current I1 of
the cavity follows the familiar equations of capacitance and in-
ductance:
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V1 = �L1

dI1(t)

dt
; (6)

where q is the charge on the capacitor C1.
The circuit is set up to have initial conditionsV1(t = 0) = v0

and I1(t = 0) = 0. V1 is regarded as the longitudinal wakefield
and I1 as (proportional to) the transverse wakefield of the cavity.

Multiplying Eqs. 5 and 6 by ei!t, integrating from t = 0 to
t!1, and taking the initial conditions explicitly into account,
we find
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where~symbolizes the Fourier transform. We also used the result
from the previous section in writing ~I as

~V1
Z

on the second line
of Eq. 7. Solving for ~V1, we find
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where!0 = 1p
L1C1

, is the natural resonant frequency of the cav-

ity and R =

q
L1

C1

, is the characteristic impedance of the cavity

resonant mode.
The Fourier transform of the transverse wakefield (~V?) is

given by

~V? =
i�

!L
~V1 =

� �

!2
0
L
v0

( !
!0

)2 + iR
Z

!
!0
� 1

; (9)

where � is a real geometric factor (with dimension of impedance)
related to the shape of the structure and not given by our model.

C. Transverse Wakefield

The transverse wakefield in the time domain

V?(t) =
1

2�

Z
~V?e�i!td! (10)

is obtained from the inverse Fourier transform. The integrand
has two branch points from the definition of Z (Eq. 4). We
choose the branch and integration contour shown in Fig. 2 [2].
The integration is naturally divided into two terms: one from the
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Figure. 2. Contour for Calculating V?

pole contribution , the other from the branch cut integral.
When R

Z(!0)
� 1, i.e. the damping term is small, the pole of

the expression ~V? is very close to !0. For the purpose of calcu-
lating the pole and evaluating the residue, Z(!) can be taken as
Z(!0). Then the poles satisfy
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where Q =
Z(!0)

R
.

The branch cut integral (persistent wakefield) is evaluated
with Eq. 2 and 4 in [1]. When t0 � 1. The total wakefield is
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where t0 = !0t.
It is clear from the above expression that the persistent wake

amplitude is proportional to 1
Q

, which means that a stronger
damping produces a larger persistent wake. It also points out that
as the resonant frequency gets closer to the waveguide cut-off,
the persistent wake is enhanced.

Eq. 12 also tells us the best waveguide damping can do at a
certain distance t0 behind the source particle. A typical value for
NLC is t0 = 40 � �, i.e. 20 wave lengths away.

If we ignore the oscillating factor sin, cos, the sign and take
1p

1� 1

4Q2

� 1 in Eq. 12, it is a good approximation to regard the

sum as the maxima of the oscillating amplitude of V?. Thus the
wakefield can be written as
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We plot b as a function of !c
!0

in Fig. 3.
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Figure. 3. The horizontal axis is !c
!0

, the vertical axis represents
b.

At a given t0, the minimum wakefield occurs if

1
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; (14)

i.e. decreasing Q beyond this value increases the wakefield at t0.
The optimumQ as a function of t0 is plotted in Fig. 4.

Substituting Eq. 14 into Eq. 13, The value of the minimum
wakefield at t0

Wmin
? = W0t

0�2:5(5b log t0 + b� 2b log b): (15)

is obtained. Fig. 5 displays the minimum wakefield as a function
of t0 for a few values of b.

III. Numerical Comparison
We have made a few MAFIA simulations on the geometry

shown in Fig. 6. It is a 2-D structure with the beam passing in the
Z direction. Taking the symmetry into account, only a quarter of
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Figure. 4. The horizontal axis is t0 = !ct, and the vertical is the
optimum Q value
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Figure. 5. The horizontal axis is t0 = !ct. The vertical axis is
the minimum wakefield achieved as a ratio to the wakefield at
t0 = 0

the structure with the electric boundary condition on the Y axis
and the magnetic boundary on the X axis has been shown. We
have calculated the persistent wake amplitude and the damped
wake amplitude from the time domain beam excitation. The ra-
tio of the persistent wake amplitude to the damped wake ampli-
tude from the actual cavity waveguide system is compared with
the prediction of Eq. 12 in Table I.

Four cases were run, one with w = 0:25, t = 0:05. The sec-
ond case has w = 0:25 and t = 0:25. The third is the same as
the second except that the waveguide is 1.1 times larger (other
dimensions do not scale with the waveguide width.). The fourth
one has the same parameters as the second except w = 0:35.

The circuit model and the MAFIA results agree very well con-
sidering how simple the circuit model is. The circuit model can
be expected to hold only when a single decaying mode dominates
the spectrum near the waveguide cutoff. The discrepancy at high
Q value is attributed to inadequate satisfaction of this condition.
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Figure. 6. Waveguide damped cavity. The big dot represents the
beam passing in Z direction.

MAFIA result Theory Case
Q = 3:94, !c

!0
= 0:776 2.17 2.19 1

Q = 6:72, !c
!0

= 0:776 1.17 1.28 2
Q = 7:34, !c

!0
= 0:705 0.587 0.659 3

Q = 12:0, !c
!0

= 0:731 0.351 0.503 4

Table I

The ratio of the persistent wake amplitude to the damped wake
amplitude is compared between MAFIA simulation and the

circuit model.

IV. Cavity and Waveguide Detuning
For a single damped cavity, Eq. 15 presents the limit of the

transverse wakefield. In the case of a multi-cell structure, the
wakefield can be further reduced by detuning in analogy with
dipole mode detuning.

In an optimally damped system, the dipole frequency (!0) and
the waveguide cut-off are detuned in proportion in each cell in
a Gaussian profile to produce the fastest and the most persistent
fall off. In aN cell structure, detuning usually results in a wake-
field which is 1

N
of that of a single cell.

Taking a 100-cell structure for example, with t0 = 40� and
!c
!0

= 13
15

, the minimum wakefield of a single cell is 6:0� 10�4

times that of an undamped cavity. With detuning, the final wake-
field is down to a few parts in a million.
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