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ABSTRACT

Future generation electron-positron linear colliders need
asymmetric flat beams in order to properly control the beam-
beam interaction at the final focus. Room temperature
collider designs ask for normalized rms transverse emittances
which look not attainable by RF Photo-Injectors, whilst the
requirements of the TESLA superconducting collider
( ε

NX
= 20 mm mrad, ε

NY
= 1 mm mrad) are at the edge of the

present RF gun status of the art, except for the asymmetric
emittance requirements. In this paper we explore the
eff ic iency of  convent ional  round-beam RF guns in
conjunction with non-linear optical devices, namely
sextupole triplets, as converters of round beams into flat
beams, in order to match the TESLA specifications. Basically
the beam emittance, at the exit of the gun, must be dominated
by non-linear effects (spherical aberrations). A quadrupole
doublet and a sextupole triplet, placed downstream the beam
transport line, provide respectively a geometric astigmatism
and an asymmetric emittance correction in the vertical and in
the horizontal phase-spaces. The possibilities to produce
asymmetric beams using this technique are presented here. In
Section 1 we introduce the subject, premises and general
performances of the device. In Section 2 we give results of
some analytical scaling laws. In Section 3 we show some
preliminary simulations of ray-tracing throughout the
structure.

I. INTRODUCTION

T h e  p r e s e n t  s t u d y  a r i s e s  f r o m  t h e  f o l l o w i n g
considerations:

1 - a consolidated knowledge of state of the art RF-guns to
generate high quality round beams ( ε

NR
= 2-4 mm mrad).

2 - a great interest in finding “slim” structures to convert
round beams into asymmetric beams, which may offer an
alternative to the damping rings.

3 - there exists no linear transformation that allows to
increase the emittance aspect ratio ε ε

NX NY
: belonging to the

class of simplectic matrixes[1], any of them conserves the

squared sum ε ε
NX NY

2 2+  and the product ε ε
NX NY

⋅ .

Starting from these assumptions, we found that non-linear
optical components could produce asymmetric emittances if
the original beam emittance (equal in both planes) is
dominated by spherical aberrations. In Fig. 1 we present a
layout of the non linear optical system (the flat beam
converter) which accomplishes this task.

Fig. 1: Layout of the flat beam converter.

The input phase space can be described by:
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It has been shown[2] that disk-like bunches (geometric
aspect ratio R/L>>1), generated by high gradient RF guns
(100 MV/m), present the desired phase-space profile: in
laminar flow regime, the linear correlation gives negligible
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while the third order correlation becomes dominant.
Moreover, depending on the radial charge density profile at
the cathode, from pure uniform to pure gaussian, spherical
aberrations assume positive, null or negative values. For pure
uniform distributions the emittance of the generated beam

shows a positive spherical aberration,ε
NR
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The beam generated by the RF gun is then driven through
a solenoid, a quadrupole doublet and a sextupole triplet. The
quadrupole lens is set to provide the beam with a proper
astigmatism ratio, Y X Tmax max/ = , and cancel (double waist)

both horizontal and vertical linear correlation. The sextupole
lens [3 ]  app l ies  a  non  l inear  rad ia l  focus ing  k ick

∆P R
R

= − ⋅α 3 , which depends on the integrated gradient of

the sextupoles ' ,
S

, the drift distance between the sextupoles



G , and the longitudinal momentum of the particles P
Z

,

through the coefficient
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The sextupole triplet has been properly matched to correct
at best the third order correlation in the horizontal phase-
space. Due to the astigmatism, in the vertical phase-space,
emittance correction cannot be optimized at the same time.
This is the origin of the asymmetry.

In this scheme the solenoid has a secondary role, it reduces
the transverse divergence of the electrons at the entrance of
the quadrupole lens: actually, the higher is the particle radial
momentum, P

R IN− , the stronger has to be the quadrupole

focusing powers (to have a double waist. Transverse
momentum corrections consistently influence the particles
m o t i o n ,  c h a n g i n g  t h e i r  l o n g i t u d i n a l  m o m e n t u m ,

P P
Z TR

= − −γ 2 21 . At first order, ∆P P P
Z OUT R IN Z IN− − −≈ 2 ; the

solenoid is then inserted to lower P
R IN−  and damp undesired

non-linear effects.

II. ANALYTICAL RESULTS.

In this section we study the dynamics of the particles,
through the quadrupole doublet and the sextupole lens. We
want to write some scaling laws to describe the output beam
characteristics, emittance aspect ratio and beam brilliance.
To describe the efficiency of the device: we follow the track
of a particle beam, starting with an emittance dominated by
spherical aberrations, in a laminar flow regime. The results
show that the efficiency of the device depends slightly on the
input characteristic of the initial beam (charge, energy,
divergence, strength of the spherical aberration...), the
dominant parameter being only the beam astigmatism ratio t,
introduced by the quadrupole doublet.

Let 1
Y X,  be the matrixes of the quadrupole doublet,
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where 1 F Q MC ' , P
! " ! " Z, ,= ⋅ (the focusing powers of the

quadrupoles) and D  (the drift distance), represent the free
parameters (' ,

! ",  are the integrated gradients). Since we

assume a laminar flow  (the divergence depends only on the
radial position in the bunch) we may apply a point to point
computation instead of matrix transport. The double waist
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to reduce the free parameters to one, and to express,
1

Y X, , 1 / ,F
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, and the resulting magnitude factors m and n, as

functions of d:
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(2.2a-d)

In this matrix computation we have disregarded the
exis tence of  the third order  term in the momentum
expression, thus finding the best quadrupole settings to
cancel the linear correlation. Now we insert expressions for A
and B into matrices 1

Y X,  and apply a point to point transport,

using the third order expression (1.1) for the input phase-
space (Fig.2). Having done so, the beam distribution at the
exit of the quadrupoles is described by the equations (Fig.3):
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(2.3a,b)

The particles are uniformly distributed over an ellipse of
semi-axes X M R1 0max = ⋅  and Y N R1 0max = ⋅ . Eqs (2.3) do not

return two pure spherical aberrations. We can look at them as
the combination of a pure cubic term, respectively of

coefficient C M3
4/  and C N3

4/  , and a residual part, given by
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that is not removable with sextupoles. It is clear now that the
efficiency of the flat beam converter has to deal with these
terms. Referring to the astigmatism ratio, t=n/m, we see that:

- the closer is t   to unity, the weaker are residuals: no
asymmetry has been generated, but we can completely cancel
the emittance;

- the farther is t to unity, the larger are the residuals: there
is big asymmetry but  we have bad chance to correct any of
the two phase-spaces for their consistent residuals.

Here below we report the scaling low for the emittance
variations, ε ε εX

NX NX
= / 0  a n d  ε ε εY

NY NY
= / 0 , the aspect

r a t i o  ε ε
NY NX

/ ,  a n d  t h e  e m i t t a n c e  c r o s s  p r o d u c t

( ) / ( )ε ε ε ε
NY NX NY NX0 0  (in units of the initial values), obtained

correcting the  spherical aberration in the horizontal motion,

by means of a sextupole triplet of strength α = C M3
4/ :
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Fig. 2: Phase-space of a spherically aberrated round beam
Fig.3: Beam phase-space after the quadrupoles (since t=1.4>1,
the larger dimension is  y, the smaller is x).
Fig.4: Phase-space after the sextupoles (spherical aberration
has been corrected).

As brilliance scales like ( )ε εny nx

−1
, the product P  is an

index of the beam degrade. We remind that t is the
astigmatism ratio m/n  between the vertical and the horizontal
orientation. Hence, choosing to damp the horizontal emittance,
for t <1 the lower emittance is assigned to the larger
dimension, while for t >1 the lower emittance is assigned to
the smaller one.

III.COMPARISON BETWEEN SIMULATIONS
AND ANALYTICAL SCALING LAWS

We briefly present in the following the results of
simulations for  a flat beam converter. The beam has been
generated with the code ITACA, from a 1+1/2 cell injector,
assuming a cathode field of 100 MV/m and a geometrical
aspect ratio of 10. The beam dynamics through the flat beam

converter has been simulated with a ray-tracing code, based on
the thin lens approximation.

A comparison between simulations (dotted line) and
analytical expressions (solid line) is shown in Figs. 5 and 6,
where the emittance aspect ration R(t) and the emittance
product P(t) are plotted as a function of the astigmatism ratio
t. When the astigmatism is null (t =1) the solid curves do not
agree with the results from the scaling laws, because the latter
assume zero thermal emittances; in effect the thermal
emittance generated by ITACA prevents the product P(t) from
dropping to zero and forces the aspect ratio to be one. Fig. 5
and 6 also show that high values of aspect ratios cannot be
reached without degrading the beam brightness:  the optimal
work-point for applications is close to t =1 , but strictly
different than 1. For 1<t<2 we may reach aspect ratios much
larger than 1 without degrading the beam too much: in
particular for t =1.30 and R=3.2 we fit the condition of
conservation of beam brightness, ε xyN =1.

Fig. 5 and 6: aspect ratio and emittance product comparison
(see text for further details).
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