
               

Optimizing the Luminosity in the Tevatron by Independently Moving the
Horizontal and Vertical Beta Stars Longitudinally

M. A. Martens, G. P. Goderre
Fermi National Accelerator Laboratory
P. O. Box 500, Batavia, IL 60510, USA

Abstract

The low beta tripplet in the Tevatron is instrumented such that
it is possible to move the horizontal and/or the vertical beta star
in the longitudinal direction. This control over beta star allows
us to minimize the longitudinal separation of horizontal and
vertical beta star at each interaction region independently, thus
maximizing the luminosity. Results of varying the longitudinal
separation of horizontal and vertical beta star are shown and the
sensitivity of the luminosity on this parameter is discussed.

I. Introduction

In the Fermilab Tevatron a series of low beta quadrupoles are
used to transversely focus the proton and antiproton bunches as
they collide in the B0 (CDF) and D0 interaction regions. The
Tevatron lattice is designed such that the center of the exper-
imental detectors is aligned longitudinally with both the min-
imum of βx and the minimum ofβy. Due to imperfections
in the lattice however, the minimumβx and minimumβy may
not coincide resulting in a lower luminosity and a shift in the
longitudinal luminosity distribution. The luminosity may also
be reduced if the centers of the proton and antiproton bunches
do not collide at the same place as the minimumβ. Therefore
the luminosity is maximized by aligning the collision point and
minimumβ.

Changes to the collision point in the Tevatron are easily made
by cogging the antiproton bunches with respect to the proton
bunches. As we will show in this paper, the positions of the
minimum β can also be changed by adjusting the currents in
the low beta quadrupoles near the interaction regions. Using
a combination of theβ moves and cogging changes we have
been able to increase the luminosity at CDF and D0 and to
better center the longitudinal luminosity distribution in the CDF
detector.

In the next section we introduce theα-bumps which are used
to change the position of the minimumβ. We then give some
examples of the sensitivity of the luminosity on mis-alignments
of the minimumβ and collision point. Finally we give some
results of implementing theseα-bumps in the Tevatron.

II. α -bump

Figure 1 shows a sketch of the low beta quadrupoles on ei-
ther side of one of the interaction regions in the Tevatron. For
our purposes the currents in these magnets can be thought of
as being supplied by four power supplies: 1 on Q3U, 1 on
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Q3D, 1 on Q2U and Q4U in series, and 1 on Q2D and Q4D
in series.∗ By changing the currents in these magnets in the
proper ratio it is possible to change the value ofα = − 1

2
dβ

ds
in the center of the interaction region. The net effect of this
α-bump is to move the position of the minimumβ without
changing the value of the minimumβ and without changing
significantly the lattice outside of the tripplet magnets.

D F D

Q4D Q2DQ3D

DF F

Q2U Q3U Q4U IP

*

Figure. 1. Sketch of the positions of the low beta tripplet quads
around the interaction point (IP). F (D) are focusing (defocusing)
in the horizontal plane.

The simplest way to understand how theα-bump works is by
first realizing that phase advance1ψ between the upstream set
of magnets and the downstream set is nearly 180 degrees. This
makes it possible to start aβ-wave in the upstream magnets and
almost identically cancel theβ-wave in the downstream mag-
nets. To determine the ratio of current changes in the quadrupole
magnets for a horizontalα-bump, for instance, we use the con-
straints: 1) start aβx-wave in the upstream magnets, 2) cancel
theβx-wave in the downstream magnets, 3) create noβy-wave
in the upstream magnets, and 4) create noβy-wave in the down-
stream magnets.

The β-wave created by a quadrupole kick of strengthq =
B′l/(Bρ) at a location where theβ has a value ofβ1 is given
by [2]

1β

β
= −qβ1 sin 2ψ0 + 1

2
(qβ1)

2(1 − cos 2ψ0) (1)

whereψ0 is the phase advance of the unperturbedβ function.
Since the value ofβ is large in the quadrupole magnets the
phase advance through the tripplet magnets is very small (0.4
degrees) and we can make the approximation that phase advance
between the magnets and the center of the interaction region is
90 degrees. This simplifies the calculation of theα-bump since
we can treat the quadrupole kicks from the 3 upstream magnets

∗In reality the Q2 and Q4 magnets are on one buss with a trim supply to add
current to the upstream magnets and the Q3 magnets are on one buss with a trim
supply to add current to the upstream magnet.



              
as single kick with strength

κx = −qQ2Uβx,Q2U + qQ3Uβx,Q3U − qQ4Uβx,Q4U (2)

where theβx,Q2U, for instance, is the average beta function in
the Q2U quadrupole, andqQ2U is the change in gradient strength
multiplied by the length of the magnet. The resultingβ-wave
is then given by

1βx

βx
= κx sin 2ψ0 + 1

2
κ2

x(1 − cos 2ψ0) (3)

Ignoring any coupling effects, and assuming the unperturbed
β function in the interaction region is given by

β(z) = β∗ + z2

β∗ (4)

we can use Eq. 3 to calculate the newβ function with theα-bump
in place,

βx,new = β∗
x + (z + κxβ

∗
x )2

β∗
x

. (5)

As Eq. 5 shows, there is no change in the value of the minimum
β and the position of the minimumβ is moved by−κxβ

∗
x . A

similar expression holds in the vertical plane as well. By choos-
ing κx andκy in the correct ratio we can change the horizontal
beta function and leave the vertical beta function unchanged.

During colliding beam operations the collision point andα-
bump strengths are adjusted to maximize the luminosities at B0
and D0 separately.

III. Luminosity dependence onα-bumps
The luminosity of proton and antiproton bunches colliding

in the Fermilab Tevatron is given by the luminosity overlap
integral [1]

ˇ = frevNpNp̄√
2π

3
σz

∫
exp(−(z − z0)

2/2σ 2
z )

σx(z)σy(z)
dz . (6)

In this expression it is assumed that the longitudinal and trans-
verse beam profiles are Gaussian and we ignore coupling and
differences in the proton and antiproton orbits. As Eq. 6 shows,
the luminosity is affected by such things as the collision pointz0,
the longitudinal widths of the bunchesσ 2

z = (σ 2
z,p+σ 2

z, p̄)/4, and
the transverse width of the bunchesσ 2

x (z) = σ 2
x,p(z) + σ 2

x, p̄(z).
The widths of the particle bunches are a function of the emit-
tances, momentum spread andβ function,σ 2

x = εxβ
∗
x +(ηxσδ)

2.
Therefore the luminosity is also dependent on theβ functions.

To demonstrate the effects that offsets in the collision point
and position of the minimum beta have on luminosity we use
Eq. 6 with a set of typical beam parameters for collider op-
erations. The 95% normalized emittances we use areεx,p =
εy,p = 25π , εx, p̄ = εy, p̄ = 15π , andσz = 45 cm. Fig. 2, for
instance, shows the reduction in luminosity as a function of an
offset in theβx. As seen in Fig. 2 the luminosity is 5% below
optimum when the minimumβx is moved by 20 cm. Offsets
in the collision point have a similar effect on the luminosity as
shown in Fig. 3.
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Figure. 2. Luminosity as a function of offset in the minimum
βx for typical collider operations.
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Figure. 3. Luminosity as a function of collision point offsetz0

for typical collider operations.

In addition to lowering the luminosity offsets in the minimum
β and collision point also affect the longitudinal distribution of
the luminositydˇ/dz. Fig. 4 shows the effect of a 20 cm offset in
the position ofβx. The dashed line is the luminosity distribution
for the nominal parameters and the solid line is the luminosity
distribution with the offsetβx. Both the reduction in luminosity
as well as the shift in the distribution are apparent.

IV. Conclusions

The α-bumps described above were implemented and used
in the Tevatron during collider run IB. An example of aα-
bump scan is shown in Fig. 5. In this particlular example the
luminosity at D0 was recorded as the magnitude of the horizontal
α-bump was changed.

After several iterations ofα-bump scans and cogging scans
we found that we could increase the luminosity at D0 by 3%,
increase the luminosity at CDF by 1% and move the center of the
distribution at CDF from +4.5 cm to within 1 cm of the center
of the detector. The net changes to the cogging and positions of
the minimumβ are shown in table I.
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Figure. 4. Change in the luminosity distribution created by an
+20 cm offset in the position on minimumβx. The dashed line
is the nominal distribution and the solid is the distribution with
the offset.
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Figure. 5. Measured luminosity at D0 as a function ofαx-
bump amplitude. This measurement shows that moving theβx

minimum by +20 cm would maximize luminosity.

1z0 -6 cm
1βx at CDF -11 cm
1βy at CDF 0 cm
1βx at D0 -4 cm
1βy at D0 +13 cm

Table I

Net changes made to Tevatron lattice as a result of cogging and
α-bump scans.
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