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Abstract

A general framework has been developed for computing lon-
gitudinal and transverse beam impedances in accelerator pipes
consisting of several coaxial tubes with non simple transverse
geometry, possibly made of composite materials and/or bearing
special features like e.g. holes or slots, based on the combined
use of Lorentz reciprocity theorem, Debye potentials, extended
impedance boundary conditions, and generalized trasmission
line (waveguide) circuit concepts. The results are applied to the
proposed LHC design.

I. INTRODUCTION
Rounded corners, multi-layered or composite walls, pumping

holes, etc., make accelerator cross-sectional pipe geometries not
simple. Beam coupling impedances must then computed by nu-
merical methods, analytic solutions being available only for sim-
ple (transverse) geometries where, e.g., the Laplacian is sepa-
rable, and simple (e.g., perfect conductor) boundary conditions.
Analytic, even approximate, solutions on the other hand are rel-
atively appealing, as they provide an immediate insight into the
role played by the design parameters.

In this paper we briefly summarize a general approach for the
analytic computation of beam coupling impedances in complex
structures, together with some representative results pertinent to
the proposed LHC liner.

II. PERTURBED COUPLING IMPEDANCES
Stationary perturbative formulae for the beam (complex, fre-

quency dependent) coupling impedances per unit length [1] of
pipes with non-simple cross sections and/or boundary conditions
can be obtained from the electromagnetic reciprocity (Lorentz)
theorem, and relate the beam coupling impedance Z0

k
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of a

simple, unperturbed pipe assumed known, to that of another pipe
differing from the former by some perturbation in the boundary
geometry and/or constitutive properties [2], [3]1. They read:
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for the longitudinal impedance, and:
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1Equations (1) and (2) are accurate for suitably small perturbations; they are
exact whenever the coupling impedances depend linearly on Z

wall
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for the transverse one2. In (1) and (2) ~r is the transverse po-
sition, r~r is the transverse gradient, �0 = v0=c=beam ve-
locity/ligth velocity (in vacuum), @S is the pipe cross-section
boundary,Esol:

0 ; Eirr:

0 are the (known, k-domain) solenoidal and
irrotational parts (Helmholtz theorem) of the electric field, in the
simple, unperturbed pipe, Q is the beam charge3, Y0 is the free-
space wave-admittance, Zwall the (complex, frequency depen-
dent) surface impedance describing the local properties of the
pipe wall, and k = !=�0c.

The first integral on the r.h.s of (1) and (2) accounts for the
effect of constitutive perturbations of the boundary, and thus is
nonzero if and only if Zwall is not identically zero on @S. The
second integral on the r.h.s. of eq.s (1) and (2), on the other hand,
accounts for the effect of geometrical perturbationsof the bound-
ary, and is non-zero if and only if the unperturbed axial field
component E0z is not identically zero on @S. Accordingly the
second integral in (1) and in (2) effectively spans only the geo-
metrically perturbed boundary subset @S � @S0.

III. IMPEDANCE BOUNDARY CONDITIONS
Equations (1) and (2) are based on a simple Leontóvich

(impedance) boundary condition (BC), at the pipe wall [4]:

~n � (~n� ~E � Zwall
~H)jwall = 0 (3)

~n being the local normal unit vector. In the spirit of Leontóvich
BC, the penetration of EM fields from vacuum into multilayered
lossy media can be viewed as lossy transverse electromagnetic
(TEM) wave propagation in the direction (locally) normal to the
interfaces.4

The equivalence between (TEM) waves in stratified media and
voltage waves through cascaded transmission lines (TL) can thus
be used to compute the wall impedanceZwall at the inner surface
of the beam screen, by repeated application of the impedance
transport formula across a homegenous TL section with length
` characteristic impedance Zc and propagation constant k:

Zin = Zc

Z` + jZc tanh(jk`)

Zc + jZ` tanh(jk`)
(4)

whereZ` is the impedance connected to the output port, and Zin

is the impedance seen at the input port.

2Note that
=

Z? is a tensor, in general. See [2], and references quoted therein.
3The impedances are obviously independent of Q, since the fields in (1) and

(2) are proportional to Q.
4Leontóvich BC can be applied provided: i) the magnitude of the relative index

of refraction of the (first) medium where the field penetrates is large, and ii) the
penetration depth is small compared to the (minimum) thickness of the medium
and the curvature radius of its boundary [5].



Figure 1. Tentative LHC design.

Even the boundary condition at a perfectly conducting screen
bearing a regular array of holes can be modeled in terms of a wall
impedance [6]:

Zwall = �j
Z0k0

stsz
(�e + �m) (5)

in agreement with [7], [8], where �e;m are the (inside) electrical
and magnetical polarizabilities of the holes (Bethe approxima-
tion implied, hole diameter � wavelength) 5, and st, sz are the
inter-hole spacings in the transverse and longitudinal pipe direc-
tions, respectively.

IV. SOME RESULTS PERTINENT TO LHC
The tentative design of LHC is shown in Fig. 1 6.
The main contribution to the beam impedances accordingly

comes from the perforated stainless steel rounded corners of
the beam screen. Using (1) and (2) and the exact solution for
the fields produced by a relativistic particle traveling parallel to
the axis of a perfectly conducting square-section pipe [10], one
gets7:
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where:
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The functions G(1)

jj;?
and G

(2)

jj;?
are displayed in Fig.s 2.8. The

wall impedance on the rounded corners of the LHC liner (7) can
be computed from the equivalent TL circuit shown in Fig. 3, by
repeated application of eq. (4),

Its real part is accordingly displayed in Fig. 4.

5For a multi-coaxial pipe, the polarizabilities should be computed in the pres-
ence of the outer shells [6].
6A square beam-screen has been chosen in view of its better performance in

terms of Laslett tune shifts [9].
7For the present case the transverse impedance is proportional to the unit

dyadic ��I , and can thus be described by a scalar.
8The second term in (6) related to boundary shape perturbation is imaginary,

thus giving no contribution to power losses. As a space charge effect, it vanishes
in the limit �0 �! 1.

The longitudinal impedance can be used to compute the en-
ergy lost by the beam per unit pipe length (parasitic loss, �E=L
[1]). For a Gaussian bunch with r.m.s. length �z, using eq. (1),
one has [6]:
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where for LHC a2Q�2c�1Z�10 = 41:91 Joule m�1, the func-
tion G(1)
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has been already defined, and:
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is displayed in Fig. 5.

V. CONCLUSIONS
We introduced a general and systematic framework for com-

puting beam coupling impedances and related quantities in
possibly composite, multilayered, complex-shaped accelerator
pipes, yielding accurate results in analytic form. We believe that
the above could be a valuable tool for predicting the performance
and optimizing the design of planned and/or existing accelera-
tors.
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Figure 2. The functions G(1)

jj;?
and G(2)

jj;?
.

Figure 3. Multilayered wall and TL equivalent circuit.

Figure 4. LHC wall impedance (rounded corners), realpart.

Figure 5. The function W (�z=a).


