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It was almost a decade ago that accelerator experts were
introduced to the concept of object-oriented programming.
This new methodology was expected to play a key role in
solving various software problems. Today, there seems be
nothing that prevents us from taking advantage of this new
technology. In fact, we are often forced to catch up with the
computer industry’s new standards. This is especially true for
graphics programming.

While evaluating the benefi ts  of  using this  new
technology, we must also evaluate whether it is as effective as
it was claimed. In this paper, we discuss these issues based on
experiences at the Advanced Light Source[1].

I. INTRODUCTION

An accelerator project has a life cycle covering the
design, construction and operation phases. Each stage needs
various kinds of software supports. The role of software
construction becomes successively more important from stage
to stage.

The design phase is focused on specifications that
determine when and how the actual construction starts and
operates. Software construction has a procedure compatible
with the structured approach, which is supported by
structured programming and sometimes enforced by
structured analysis and design. Sometimes the use of the
structured approach is not directly related to software
construction. When a project has specification-based
procedures it indicates that the project management is
structured.

The need for a structured approach is evident in
hardware construction projects, such as buildings, magnets,
and power supplies, because it is very difficult to modify them
after they have been created. This need is not always as clear
in software development, since software can allow for more
flexibility. Using a structured approach may sacrifice the
software’s flexibility. In the early stages of a project the
software specifications are  in a conceptual state and tend to
be incomplete especially for high level application programs.
In addition, the rapid progress of computer technology may
make a specification obsolete much earlier than expected.

Lack of flexibility also makes software management
difficult in the normal operation phase. The duration of the
accelerator operation is much longer than the use of specific
software, so there is a continuous demand for the software
modifications. This is particularly true for synchrotron light
sources which have a wide variety of uses and operation
modes .  The  so f tware  sys tem mus t  be  des igned  to
accommodate changes during the operation. This is a
relatively new requirement.

Although the structured approach has improved software
quality and productivity, a better method must be cultivated.

II. OBJECT-ORIENTED APPROACH

The si tuat ion descr ibed above is  not  l imited to
accelerators. Object-oriented programming (OOP) is believed
to be panacea by many developers[2] .  There  are  two
approaches in OOP: a pure approach like Smalltalk and a
hybrid approach like C++.  Today, the hybrid approach, the
most common of which is C++, has prevailed not only for
accelerators, but in many other fields as well.

The merits of adopting OOP have been discussed
frequently in the literature and are best described in “Object-
Oriented Software Construction”, by B. Meyer[3]. Since there
are many aspects to OOP, we will discuss only a few.

A. Modularity
Increased modularity is the most immediate and natural

result of OOP. It is analogous to the use of ICs in hardware
circuits[4]. This feature encourages the separation of  module
developers and module users. Here a module means a class
library. A  developer can create modules without knowing the
final requirements of the user. The user can utilize modules
without knowing much about their implementation detail.

B. Flexibility
Software development is often limited by its complexity,

but this can be significantly improved by more modularity. In
addition, users have the freedom to customize the modules for
their own purposes through an inheritance mechanism. This
flexibility reduces the role of rigid software specifications and
can provide more expandability and adaptability.

III. AREA OF OBJECT-ORIENTATION

OOP has become popular in the graphical user interface
(GUI) field of programming.  This has happened much earlier
than in other fields because GUI is complex enough to
encourage developers to adopt OOP. Although GUI plays an
important role in accelerator-related programming, we have
not discussed it here because it is not specific to our field. We
have focused on the following items:

A) Accelerator modeling and simulation
B) Device control
C) Machine studies
D) Machine operations

* This work was supported by the Director, Office of Energy Research, Office
of Basic Energy Sciences,  Material Sciences Division of the U. S. Department
of Energy under Contract No. DE-AC03-76SF00098.



A. Accelerator Modeling and Simulation
The most  direct  method of  t reat ing accelerator

components, such as magnets, drift space and beam position
monitors (BPMs), is as objects.  This is because there are
always real physical objects associated with them. By
combining such elements or objects we can create a structured
object to represent a beam-line as a series of the component
objects. The circular ring can be a special type of a beam-line
object. Accelerator modeling and simulation are very basic
subjects for OOP.

Whether to use a beam object or not, becomes a design
issue. There is not a lot of merit in treating a single particle
as an object, but a bunch with multiple particles can be
effectively simplified into an object.

Operator overloading does not always require the use of
OOP, but can be supported efficiently by some of the OOP
languages, such as C++. This mechanism has been popular
with complex, vector and matrix calculations and is easily
extendible to cover automatic differentiation or differential
algebra (DA)[5]. In the same way, the accelerator-lattice
definition can be simplified. Once we have found that the
relationship between a lattice and its magnets is the same as
that of a string and its characters. A string class can be
extended to support the lattice definition.

B. Device Control
Device control involves the construction of a virtual

device-class library on top of a device-access library that is
not object oriented. A physical device is usually associated
with mult iple access channels.  I t  is  the applicat ion
developer’s task to deal with its details. A virtual device layer
serves to hide the intrinsic complexity and provide flexibility
through the inheritance mechanism.

C. Machine Study
Machine study is a special mode of machine operation

performed by accelerator experts. Accelerator experts have a
continuous need for software development  and often become
part of the study. In addition, accelerator experts who are not
software developers will develop programs using whatever
method they can use. Ideally they can share software
resources as class libraries.

D. Machine Operation
Quite contrary to the case of machine studies, machine

operation is carried out by operators. Programs for operation
are provided by the control software experts. Therefore, it
should be possible to adopt OOP and create class libraries.
These class libraries will eventually provide a standard for the
control programs.

The key issue is the execution management of the
programs for operators. A control system is not a collection of
individual programs, and there is a need for a mechanism to
manage the overall operational context for the machine, for
example, with regard to locking and unlocking devices,
according to the operation mode. But this is not sufficient to
accommodate very complex operation mode. One possible

approach is to recognize operations as objects. Then the
problem becomes a run-time management of these operation
objects. There is a possibility that we can reuse some kind of
management scheme that has been created in other fields.

IV. OBJECT-ORIENTATION AT ALS

The ALS is small enough to adopt OOP, through a small
number of software developers, at an early phase of its
construction. OOP has been constantly used for GUI
programming, modeling and simulation, and device controls
since the ALS commissioning phase[6].

A. Accelerator Modeling and Simulation
As one of the first projects of the third generation light

sources, the importance of accelerator modeling and
simulation studies was strongly emphasized in the lattice
design phase[7]. We have developed modeling and simulation
programs, a 4x5 matrix code Tracy[8] and a full 6x6 code
Gemini[9], using structured programming in Pascal. As these
programs use the Pascal-S compiler[10] as the framework,
users could freely program their procedures in Pascal to carry
out simulation studies. The expandability and  compatibility
was not enough to develop a high level application program
with the ALS control system[11].

During the commissioning phase, the kernel of Tracy
was extracted and rewritten as a portable C library. Then
OOP was applied by using Eiffel just on top of the C
library[12]. Later, the library was completely redesigned in
C++ to be compatible with the control system. This C++ class
library is now called Goemon.[13]

Accelerator components such as magnets and BPMs are
clearly separated from structures such as beam lines and
rings. The component class has a class structure shown in
Figure 1.
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Figure 1. Goemon Component Class Library

Notice that a wiggler or an undulator is an exception, because
it is represented either by a hard-edge model or a vertical
quadrupole, and it is a composite component that is a beam
line by itself.
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Figure 2. Goemon Structure Class Library

Figure 2 shows the Goemon structure class. Eline is a
sequence of the Element objects used to define a lattice



structure by using an operator without using a parser as
shown in Table 1. Element is the root of the component
class.

DRIFT(L1,3.378695);
DRIFT(L2,0.434500);
.......................
BEND( B,0.43257, 5.00, 3.00, 0.00, -0.810);
......................
Eline CELL=SYM+L1+2*QF+L2+2*QD+L3+B+L4+2*QFA

               +L5+B +L5+2*QFA+L4+B+L3+2*QD+L2+2*QF+L1;

Table 1. Lattice Definition using Operator Overloading

Belement is one unit of a beam line that refers to Element
and has storage for the optics functions and particle orbits at
that location. BeamLine represents a beam-line and uses
Eline to read the lattice structure and supports particle tracing
and optics calculations.

Ring is a special BeamLine for circular accelerators. ALS
structures are supported by derived classes with customized
creators.  The library also supports a full 6x6 tracking routine
to simulate the effect of closed-orbit path-lengthening.

B. Device Control

Single-Device Control The ALS control system uses PCs
that run Windows as operator consoles. The application
programs were developed on them. Each physical device has
one or more DMM channels.  A DMM channel is a flat entry
to the device-control channel-arrays. Each DMM channel has
several subchannels to get and/or set process values, monitor
values  and Boolean values.

A DMM channel is wrapped with an object called
DMMobj[14]  that is a root class of single virtual devices. It
was originally developed in Pascal with object support and
rewritten in C++ on Windows 3.1. Then it was ported to
Windows NT. Therefore, one device-class library could be
kept for several implementations. Table 2 is an example for
the declaration of a DMMobj in C++:

class DMMobj
  {
    public:
      UBYTE2 errCode;
      UBYTE4 index;
      DMMobj();
      DMMobj(char *aName);
     ~DMMobj();
      void findName(char *aName);
      virtual float getAM(void);// get monitor value
      virtual float getSP(void);// get process value
      virtual void  setSP(float aSP);// set process value
      virtual int   getBM(void);// boolean monitor
      virtual int   getBC(void);// get boolean
      virtual void  setBC(int OnOff);// set boolean
      //   block transfer
      UBYTE2 getOffset(UBYTE2 Control);
      void getBytes(UBYTE2 Offset,UBYTE1*s,int n);
      void setBytes(UBYTE2 Offset,UBYTE1*s,int n);
  };

Table 2. DMMobj Header in C++

The class structure under DMMobj is shown in Figure 3.
Each physical device is supported by one of the classes in this
family. Magnets, BPMs, and vacuum gauges are supported by
corresponding classes that do not depend on the accelerator
section where a single-device would be located. Undulators,
DCCT beam-current monitor, and RF systems are supported

by specialized classes[15] at the device level.
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Figure 3.  Single Device Class

Multiple-Device Control   Multiple-device control is needed
to control a group of devices collectively.  Figure 4 shows the
orthogonal relationship between a single-device class and a
multiple-device class. For example, BPMobj supports an
individual BPM in any accelerator section, and the multiple
device class SRBPMS supports all the BPMs in the storage
ring. A multiple device class is fully customized for the
section it locates. In addition it supports quasi-synchronized,
grouped device access and file access.
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Figure 4.  Single and Multiple Devices

Table 3 shows the header of SRBPMS in C++:

class SRBPMS float getXref(int n);
{ float getYref(int n);
   BPMobj *BPM[97]; float getXraw(int n);
 public: float getYraw(int n);
   // for data exchange void  calcStat();
  SRBPMrec BPMrec; void  setRef();
  SRBPMS(); void  setOffset();
 ~SRBPMS(); void  clearRef();
  void  getData(); void  write(FILE *f);
  // access the n-th BPM void  write(char * fname);
  float getX(int n); void  read(FILE *f);
  float getY(int n); void  read(char * fname);
  float getXave(int n); };
  float getYave(int n);

Table 3. SRBPMS Header in C++

The function getData() does a quasi-synchronized reading of
all the storage-ring BPMs. As each BPM reading takes 2.0
msec to read X and Y, getData() takes about 200 msec for 96
BPMs. After using getData() functions getX(n) and
getXave(n), etc., are available for access to individual data.
This class also supports averaging and offset manipulation.

These device classes have been in daily use to support all
the magnets, BPMs, and vacuum readings in the 1.5 GeV
injection beam line and the storage ring. These magnets are
still operated  by using Pascal programs written during the
commissioning phase. Other programs that involve BPMs
were written in C++ and have been moved to Windows NT.

These multiple device classes must interface with other
classes, such as the simulation class. Instead of pointing to



the other class, we use a data class to communicate indirectly.
In the case of SRBPMS, this class called SRBPMrec. It is also
shared by a simulation class and a graphics class.

EPICS Channel-Access  Currently, all the machine devices
are controlled by using the original DMM-based control
system, except for the communication part of the undulator
feedforward-programs[16] .  T h i s  i s  b ecau se  E PICS[17]
channel access is used for the photon beam line control.
Channel access has been ported to PCs running Windows NT
and is supported as an object in C++[18].

C. Machine Studies
As machine studies are carried out on the PCs running

Windows, there is a wide variety of software tools available
for physicists and engineers who actually program. The tools
actively used are LabView, MatLab, and compilers.

LabView is mainly used to control GPIB devices for
instrumentation purposes[19], MatLab for the area where the
algorithm itself has to be developed and compilers where high
performance is required. The compiled applications are
mostly written in C++ on Windows 3.1 or Windows NT 3.5.

D. Machine Operation
Although there are 3 insertion devices in the ALS storage

ring, the operation is very stable. Currently real-time response
is not required by the controls software. Therefore, most of
the programs written in the commissioning phase are still in
use, including those written in Toolbook, Excel and Visual
Basic. They support a wide variety of fields: the saving and
restoring of the machine-device status, the booster energy-
ramp linearity-corrections, turning on and off devices in the
injector section, timing setting, scraper and TV-paddle
controls, and the storage-ring bunch-filling pattern controls.
These do not require quick responses and some are complex.
For these cases, the tools worked effectively on Windows.

But there are areas where high performance becomes an
issue. These areas are covered by programs originally written
in compilers. Most of them are object-oriented and use the
DMMobj class-library. Many of them, especially those that
support magnet operations, had to be updated several times
when the operation scheme was changed. As OOP supports
such evolution, these modifications were done efficiently. We
have seen the benefit of OOP through such experiences.

An operational-context control is being developed. We
have a device lock/unlock mechanism that uses shared
memory, in the Intelligent Local Controller(ILC) to allocate
registers, to count the “heart beat” of all magnet power
supplies.  We did not adopt a static semaphore because of the
tolerance issue. Possible conflicts of magnet control, by
multiple programs, are being prevented. But, this mechanism
is at the device level and is not suitable to control complex
operation modes.

A more advanced scheme to organize the machine
operation has been investigated[20].  It uses a fully object-
oriented approach including an object-oriented design tool

and an object-oriented database system. This combination
looks very promising.

A model-based control can use both  modeling objects
and device objects, but it becomes usable only after a model is
well calibrated. A model calibration itself is an important task
at an early stage of the machine operation. There is a need to
provide a model-free control scheme until the calibration is
completed[21] .   The commissioning of  a model  is  an
evolution process and OOP plays an important role.

V. LIMITATIONS OF OBJECT-ORIENTATION

We have confirmed that there are significant benefits
from OOP, based on our experiences at ALS. The fields
where OOP was applied, have also been functioning very
well. To follow are some problems that cannot be ignored.

A. Lack of OO Developers
The first and most crucial problem is the lack of software

developers in OOP. It has been said that it takes several
months to train staff who already use C. This training period
becomes a burden in many cases. Software developer training
should be recognized as an important part of software
development. Otherwise, it is impossible to set up a group of
developers who can coherently work using objects. One
example is the pioneering effort at the AGS Booster[22].

B. Reusability and  Compatibility
OOP increases software reusability, which means the

availability of reusable class libraries. But, a problem occurs
as soon as we try to use several libraries. Compatibility
among class libraries can be obtained either when they are
designed to be compatible or when they are orthogonal to
each other. As a result, most class libraries are grouped into
families that are exclusive to each other. A very common
situation is that the selection of a GUI class determines the
family. Unfortunately, this is an inevitable result of the fact
that GUI is event-driven, if it contains an application
framework.

C. Lack of OO Standards
Class l ibraries are very useful i f they are created

according to an existing standard. We can implement
standards without knowing the detail by using a reusable
class prepared for it. In many cases, the class library becomes
an exclusive standard. That is, the lack of reusability and
compatibility is mainly due to lack of regulated standards.
The reality is that standards are determined and provided by
the manufacturer and they have not agreed on a standard,
even in GUI classes, especially for UNIX Xwindows.

In addition, there is an intrinsic limit. By its very nature,
OOP does not support persistency and concurrency. In other
words, OOP itself does not cover databases, multitasking, or
networking. They are outside of the language specification
and as a result they are not supported by libraries that are not
designed for OOP.



Relational databases have been popular, but most of them
are proprietary and lack compatibility even with Structured
Query Language (SQL). Very recently, SQL added a
reasonably accepted interface standard called Open Database
Connectivity (ODBC).
  There are C++ classes available that wrap ODBC, but the
performance of SQL itself will  not be sufficient for
accelerator control purposes. The standardization has not
been sufficient in this field, even before we discuss its object-
orientation. Networking has a similar situation. Both are
usually treated as parts of various kinds of frameworks that
are completely exclusive to each other.

D. Lack of the “Data Module” Concept
A data module is  a  NODAL[23] concept that lies

between the system developers and their users, who are
application programmers. It is a kind of software module that
is similar to the object, but does not have the inheritance
capability. The system developers create data modules as
packages of routines. These data modules become new
statements of the NODAL interpreter. The users access these
modules as a part of the interpreter environment. In the case
of Tracy and Gemini, we used a Pascal compiler for this
purpose.  But ,  i t  i s  not  common in the modern GUI
environment. Once a GUI application is created, it is not
usually expandable. If a function needed by a user is not
there, he may have to keep clicking buttons and menus
endlessly to reach his goal.

The interface between the system developers and
application users can be class libraries. Then the class users
must recompile programs for any change they make. The
programmability at run time is important and usually not
being paid enough attention to by the providers. This is again
a consequence of the structured approach, since it requires too
much weight on the specifications in advance. OOP improves
the situation considerably, but does not support the concerns
of the data module concept.

VI. CONCLUSION

When OOP was discussed, the focus was on its benefits.
Recently, pitfalls of OOP[24] are being pointed out. We have
described the problems with OOP in respect to accelerators.
But these are not serious enough for avoiding OOP. In our
view the benefits are much greater. Remember that the most
important thing in the software construction, for the
accelerator project, is to provide programs on time using a
reasonable amount of resources. Although we had to make
some very practical compromises while using OOP, it
improved productivity.
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