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I. INTRODUCTION
In 1992 a longitudinal, single bunch instability was observed

in the SLC damping rings. [1] Beyond a threshold current of
3 � 1010 a “saw-tooth” variation in bunch length and energy
spread was observed, a phenomenon that made it practically
impossible to operate the SLC collider above threshold. For
the 1994 run a new, low-impedance vacuum chamber was in-
stalled in both damping rings both to alleviate this problem
and to shorten the bunch length. According to recent mea-
surements the bunch length has indeed become shorter, but the
“saw-tooth” instability is still seen, now beginning at currents
of 1:5� 2:0� 1010. [2] Fortunately, it appears to be benign and
does not seem to limit SLC performance.

In an earlier paper we investigated the single bunch behav-
ior of the SLC damping rings with the old vacuum chamber us-
ing time domain tracking and a Vlasov equation approach. [3]
When compared to measurements we found: good agreement
in the average values of bunch length, energy spread, and syn-
chronous phase shift as functions of current; a 30% discrepancy
in threshold current; in agreement, a mode with frequency near
2.5 times the synchrotron frequency (the so-called “sextuple”
mode) as signature of the instability and the slope of the mode
frequency as function of current.1

In the present paper we repeat the exercise of the earlier paper
but with a new wakefield. The impedance which used to be
inductive has become resistive, leading to different phenomena.

In a recent paper the instability in a purely resistive ring is an-
alyzed using a Vlasov equation approach. [5] It is demonstrated
that such an instability is a weak instability, with a growth rate
proportional to intensity squared, and one that can be described
as the coupling of two quadrupole modes with different radial
mode numbers. We will compare our results with this paper.
For related papers, see also Refs. [6], [7].

II. THE WAKEFIELD
In the vacuum chamber upgrade of the SLC damping rings

primarily small objects that are inductive at nominal bunch
lengths (� 5 mm) were removed or modified, [2] [8] changing
the character of the rings from inductive to resistive. As be-
fore, we have attempted to find an approximate Green function
wakefieldW (z) for the new ring using the time-domain parts
of the MAFIA family of computer programs, [9] taking as driv-
ing bunch a short, gaussian bunch with rms length of 1 mm. To
make it causal, the part in front of bunch center (z < 0) was re-
flected and added to the back (see Fig. 1), a transformation that
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1In Ref. [3] it was stated that the measured slope was three times smaller

than the calculations. However, subsequent, more accurate measurements are in
agreement with the calculations. [4]

Figure 1. The wakefield used for the simulations.

preserves the real part of the impedance. We expect to be able
to find beam instabilities down to wavelengths of about 1 cm.

We have had difficulty obtaining an accurate wakefield, and
we are not very satisfied with what we have; it should be consid-
ered only preliminary. As we have removed the grosser, cylin-
drically symmetric objects (45� transitions, masks, etc.) we are
left with a machine dominated by objects for which it is difficult
to obtain an accurate wake function, such as, for example, the
beam position monitors. Also, difficult vacuum chamber objects
that could previously be ignored, such as the septum chamber,
may now be important. In spite of these misgivings, and even
though (as we will see) the results do not agree with the SLC
measurements as well as before, we feel that this wakefield is
still useful for studying the basic character of the damping ring
current dependent behavior.

The induced voltage on any turn is given by

Vind(z) = �eN

Z z

�1

W (z � z0)�z(z
0) dz0 ; (1)

with N the bunch population and�z(z) the longitudinal charge
distribution. To see that it is resistive in character at typical
bunch lengths we plot in Fig. 2,�z andVind, for N = 2� 1010

and nominal length�z0 = 5 mm, the solution to the Haïssinski
equation. [10] We note that roughlyVind can be written as
Vind � �eNRc�z, withR the resistance, a constant. In fact, if
we take a pure resistance withR = 880 
, and repeat the po-
tential well calculation, we obtain almost the same bunch shape
(the dashes in Fig. 2).

III. SIMULATIONS

For tracking we let the beam be represented byNp macro-
particles; each particlei has position and energy coordinates



Figure 2. A potential well example.

(zi; �i). The properties of particlei are advanced on each turn
according to the equations: [11]

��i = �
2T0
�d

�i + 2��0

r
T0

�d
ri + V 0

rf zi + Vind(zi) (2)

�zi =
�cT0

E0

(�i +��i) ; (3)

withT0 the revolution period,�d the damping time,��0 the nom-
inal rms energy spread,V 0

rf the slope of the rf voltage (a nega-
tive quantity),� the momentum compaction factor, andE0 the
machine energy;ri is a random number from a normal set with
mean 0 and rms 1. To calculate�z on each turn we bin the
macro-particles inz.

For the simulations we takeT0 = 118 ns,E0 = 1:15 GeV,
rf frequency�rf = 714 MHz, ��0 = 0:07%, and�d = 1:7 ms.
We chooseVrf = 0:8 MV, where�z0 = 4:95 mm, and the
synchrotron frequency�s0 = 99 kHz. Therefore�s0T0 = 85
turns,�d=T0 = 14450 turns. We takeNp = 30; 000, and for�z
we use 100 bins extending over10�z. We let the program run
for 3 damping times.

As a second method of calculation we use a computer pro-
gram that solves perturbatively the time independent, linearized
Vlasov equation, including the effects of potential well distor-
tion, looking for unstable modes. [12] Beyond the threshold cur-
rent we assume the average energy distribution remains gaus-
sian, with the rms width�� increasing to keep the beam just at
the threshold condition.

IV. RESULTS

A. The Instability Threshold

For this wakefield the instability threshold is normally easy to
find from the turn-by-turn tracking results. Below threshold the
moments of the distributions are well behaved, above threshold
they undergo macroscopic oscillations (see Fig. 3). The thresh-
oldNth � 1:15� 1010.

Figure 3. The turn-by-turn rms energy spread just above thresh-
old (a) and at a higher current. (b)

Figure 4. Nth vs.�d obtained by tracking.

When we artificially reduce the damping time in tracking we
find that the thresholdNth increases significantly (see Fig. 4).
Fitting to a power law we find thatNth varies approximately as
�
�1=2

d (the curve in Fig. 4). This agrees with the weak growth
expected in a purely resistive machine, which varies as� eaN

2t,
with a a constant andt time. [5] Note that when we repeat the
tracking procedure for the old, inductive vacuum chamber the
threshold increases by only 30% as the damping time is de-
creased by a factor of 15. The two instabilites are quite different:
the old was a strong instability and the new a weak one.

According to a formula in Ref. [5] (Eq. 27) we can raise the
threshold by� 1�1010 if we add a pure inductance ofL = 2 nH
(by adding a term�cL�0z toVind). This is roughly what we find;
and atN = 4�1010 ��=��0 has decreased from 1.5 to 1.1. This
suggests that even a small amount of tune spread can damp this
instability.

B. Average Bunch Properties

Above threshold the oscillations in the moments of the distri-
butions obtained by tracking can be large (atN = 3:5�1010 the
variation in�z is�28%) and the pattern can vary greatly. It de-
pends sensitively on, for example,Np, which (for practical rea-



Figure 5. Average bunch propertiesvsN . Shown are track-
ing results (plotting symbols) and the Vlasov method results
(curves).

Figure 6. Mode shape atN = 2� 1010.

sons) it is difficult for us to increase significantly, while keeping
�d fixed. However, the average amplitudes appear to be rather
insensitive to changes inNp. Fig. 5 gives the average values of
�z, ��, andhzi as functions ofN , and also shows the Vlasov
equation solution for comparison. The agreement is quite good.
Note that for such a resistive impedance the potential well dis-
tortion is small; the bunch lengthening is largely due to the in-
crease in energy spread above threshold. Thus, by adding 2 nH
of pure inductance to reduce the energy spread at4 � 1010 the
60% increase in�z is reduced to 30%.

Fig. 6 gives contours of phase space of the unstable mode at
N = 2 � 1010 as calculated by the Vlasov method. Tracking
gives a similar result. We see a quadrupole mode, with a slight
asymmetry, that has been shifted forward.

C. The Spectrum

The mode frequencies as function ofN , as obtained by the
Vlasov method are shown in Fig. 7. A dot represents a stable
mode, an `X' an unstable mode, with its size proportional to
the growth rate. The strongest unstable mode is a quadrupole
mode beginning atN = 1 � 1010 with � = 1:95�s0, and then

Figure 7. Modes obtained by the Vlasov method.

Figure 8. Spectrum forN = 4� 1010, �d=T0 = 1450.

continuing with a slope of�0:07�s0=1010. As was the case
for a purely resistive machine the instability can be described
by coupling of two radial modes with the same azimuthal mode
number.

For the tracking results, by Fourier transforming any of the
turn-by-turnmoments of the distributionwe can obtain the spec-
trum. Alternatively, we can simulate what a spectrum analyzer
does by calculating [13]

g(!) = j
X
k

ei!kT0~�zk(!)j (4)

with k the turn number and~�zk(!) the Fourier transform of
the distribution on thekth turn. We find sidebands at1:9�s0,
but because of numerical noise we havepoor resolution. To
give an example with good resolution let us setNp = 150; 000,
artificially reduce�d by a factor of 10, and considerN = 4 �
1010. In Fig. 8 we display the result near a central frequency
�c = 30 GHz. We see sidebands of the revolution frequency
separated by1:785�s0. Note that the sideband amplitudes are
not of equal height. In general, potential well distortion tends to
result in an asymmetric mode shape; therefore, for frequencies
�c & c=2��z we expect the sidebands to be of unequal height.



V. COMPARISON WITH MEASUREMENTS [2]
In the measurements the bunch length is smaller and the beam

profile more asymmetric than before, and above threshold a fre-
quency just below2�s0 is observed, which are consistent with a
resistive wakefield and our simulations. In detail, the agreement
is not good unless we asume our wake is missing about 2 nH
(jZ=nj = 0:1 
) of pure inductance. The measurements give:
Nth = 1:5� 2:0� 1010, and atN = 4� 1010 ��=��0 = 1:15,
and�z=�z0 = 1:25; the calculations including the inductance
give: Nth = 2:0� 1010, and atN = 4 � 1010 ��=��0 = 1:10,
and�z=�z0 = 1:30. The unstable mode frequency at threshold
and the slope, given by measurements (calculations, including
2 nH): 1.77 (1.87)�s0 and -.06 (-.07)�s0=1010.

Finally, how can we understand the reduction of the measured
threshold when the damping ring impedance was reduced? In
the old, inductive machine there was a strong instability ob-
served at3�1010. In an inductive machine there is a large inco-
herent synchrotron tune spread which will Landau damp weaker
instabilities which otherwise might appear at lower currents. By
removing mostly inductive elements, and thereby changing the
character of the ring to a resistive one, we have removed this
tune spread, and presumably are now able to observe one of
these weaker instabilities.
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