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Abstract

In this paper, we present a method for computing growth rates
and frequency shifts of a beam containing multiple non-rigid
bunches. With this approach, we calculate non-rigid multibunch
effects which can impact phenomena which are traditionally
treated as single-bunch effects, such as the transverse mode-
coupling instability. This approach is important for high cur-
rent storage rings such as PEP-II at SLAC (the B-Factory) which
have very strong inter-bunch forces. Typical calculations treat
multibunch and single bunch effects separately, and thus elim-
inate important interactions between the two. To illustrate the
technique, we calculate growth rates and frequency shifts using
PEP-II as an example.

I. Introduction

In [1], we describe a method for computing transverse multi-
bunch instabilities. This method allows us to include the effects
of internal degrees of freedom of the bunches, including coupling
between the resulting modes. Previous work by other authors has
either considered coupling between internal degrees of freedom
for only a single bunch, or multiple bunches where the internal
degrees of freedom are not coupled (see [1] for references and
more discussion).

In this paper, we briefly describe the formalism, leaving the
reader to [1] for more details. We then describe in detail the
effects that are seen due to transverse multibunch mode cou-
pling. This is done by plotting the mode frequencies and growth
rates versus current for previously studied cases (transverse sin-
gle bunch mode coupling and transverse multibunch modes with-
out coupling), and comparing those plots to similar plots obtained
by finding the transverse multibunch modes including coupling
between internal degrees of freedom.

II. The eigenvalue equation

We can write a Vlasov equation describing the time evolu-
tion of the distribution for each bunch in terms of all the bunch
distributions. The bunch distribution is assumed to be a time-
independent stable distribution which satisfies the Vlasov equa-
tion for zero current, plus a small time-dependent perturbation.

That Vlasov equation can then be turned into a nonlinear eigen-
value equation for the coherent mode frequenciesÄ. If we as-
sume that 1) the bunches are identical and equally spaced, 2) the
non-wakefield forces are all linear and independent of position in
the ring, and 3) the bunch distribution we’re perturbing about is
Gaussian and only depends on the non-wake Hamiltonian, then
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our eigenvalue equation becomes [1]
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whereω0 is the angular revolution frequency of the ring,ωy is
the betatron frequency,ωz is the synchrotron frequency,r0 is the
classical radius of the electron,c is the speed of light,βy is the
average beta-function,N is the number of particles in a bunch,M
is the number of bunches,γ0 is the nominal beam energy divided
by the rest mass energy of the particle,L is the length around the
ring, σl is the bunch length,β0c is the nominal particle velocity,
andZ⊥ is the transverse impedance. Feedback can be added by
adding an additional term toKk with Z⊥(pω0 + Ä) replaced by
ZFB(pω0 + Ä)e−2π i p1s/L , whereZFB is the Fourier transform
of the feedback response, and1s is the distance between the
pickup and kicker.

III. Illustrative Example
We will use the PEP-II B-Factory low energy ring [2] to il-

lustrate the effects that arise from multibunch mode coupling.
We have used an estimate for the broadband impedance using
parameters from [3] and higher-order mode impedances for the
cavities from [2], [4]. For this example, we truncate equation (1)
atm = 1.

Fig. 1 shows mode coupling appearing when we consider only
a single bunch. For small currents, the growth rates of the modes
are negligible, and the mode frequencies change with increasing
current. At the current where the mode frequencies coincide,
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Figure. 1. Single bunch mode coupling. Solid lines are real part,
dashed lines are imaginary part.
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Figure. 2. Multibunch mode frequencies, no coupling.
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Figure. 3. Multibunch mode frequencies, with coupling.

two of the modes resonantly drive one another, and exponential
growth results.

Now consider multiple bunches. In all the following diagrams,
we have only shown the modes with the largest growth rates. If
we ignore coupling between them = 0 andm = 1 multibunch
modes, Fig. 2 demonstrates that for many of the multibunch
modes, the frequencies of them = 0 and one of them = 1
modes coincide at currents much lower than where the frequen-
cies coincide in the single bunch case of Fig. 1. When we allow
the multibunch modes to couple, then Fig. 3 shows the real
parts having nearly identical behavior to the uncoupled case. In
the uncoupled case, the frequency shifts were nearly linear with
current. Once coupling occurs, the curvature of the mode fre-
quencies with current increases, and so we notice that in Fig. 3,
the current where the mode frequencies intersect is even lower
than what we see in the uncoupled case. Note that this current is
still well above the intended operating current of the PEP-II low
energy ring [2].

Now we examine the growth rates of the multibunch modes.
First we look at them = 0 modes. In the uncoupled case, Fig.
4 shows the growth rates increasing nearly linearly with current.
If we allow the modes to couple, there are minimal changes to

the growth rates of them = 0 modes, as can be seen in Fig. 5.
This is largely due to the fact that the largest growth rates are
significantly larger than the growth rates due to mode coupling
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Figure. 4. Multibunchm = 0 growth rates, no coupling.
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Figure. 5. Multibunchm = 0 growth rates, with coupling.
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Figure. 6. Multibunchm = 1 growth rates, no coupling.

(compare Fig. 1). In fact, if we were to look at modes with very
small growth rates, we would see behavior almost identical to
the single bunch case in Fig. 1.

Next, consider them = 1 modes. In the uncoupled case,
we see the growth rates increasing linearly with current in Fig.
6. Notice also that the growth rates are much smaller than they
were in them = 0 case. In fact, they are comparable to what one
sees in single bunch mode coupling (Fig. 1). When we include
coupling, we in fact see significant increases in the growth rate
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Figure. 7. Multibunchm = 1 growth rates, with coupling.
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Figure. 8. Multibunchm = 1 growth rates, with coupling. Ex-
panded vertical scale shows curvature of mode lines with current
even at low currents.

of them = 1 modes, as shown in Fig. 7. Notice that the growth
rates increase sharply at just the point where the real part of
the mode frequencies coincide (see Fig. 3). The multibunch
mode coupling also causes the mode frequencies to no longer
increase linearly with current, even for currents well below the
current where the real part of the frequencies coincide. This is
demonstrated in Fig. 8. This can causem = 1 growth rates to be
significantly increased over their uncoupled values, even at very
small currents.

Finally, we can consider the effects of adding a feedback sys-
tem. Typically, a transverse feedback system does not operate
at frequencies sufficiently high to dampm = 1 modes. Thus,
using parameters similar to those proposed for the PEP-II B-
factory, Fig. 9 shows how them = 0 modes are well damped,
but them = 1 modes still exhibit significant growth rates due to
multibunch mode coupling.
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Figure. 9. Multibunch growth rates, with feedback. Dashed
lines arem = 0 modes, solid lines arem = 1.
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