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Abstract

The question of microwave stability at transition is revisited
using a Vlasov approach retaining higher order terms in the par-
ticle dynamics near the transition energy. A dispersion relation
is derived which can be solved numerically for the complex fre-
quency in terms of the longitudinal impedance and other beam
parameters. Stability near transition is examined and compared
with simulation results.

I. INTRODUCTION
The question of microwave stabilityat transitionhas long been

an issue for machines which must pass through transition en-
ergy. Due to the fact that the relative motion of particles at transi-
tion goes to zero, Landau damping is presumed to vanish. How-
ever, growth rates may also be sufficiently long to prevent sig-
nificant mode growth. Recent theoretical studies have suggested
that transition is absolutely stable against microwave modes ow-
ing to a particular cancellation of resonant contributions [1], al-
though this analysis was based on a truncated model of the par-
ticle dynamics.

In this work we would like to reconsider microwave stability
at transition including a necessarily higher-order expansion of
the particle motion around the transition point. This is done in
order to resolve the pole-cancellation issue referred to above. In
particular, we find that while a portion of the distributionmay in-
deed be stable near transition, those particles which exist slightly
off transition in a distributionof finite momentum spread will al-
ways lead to instability. By retaining higher-order terms in the
particle motion, we find an extension of the usual linear stability
model for longitudinal modes which shows the appearance of a
new unstable branch. The resulting dispersion relation is solved
numerically for the stability boundary in the impedance plane.

As a confirmation of the analytical results, we have performed
particle simulations in a coasting beam, consistent with the no-
tion of short- wavelength modes associated with microwave in-
stability. Using this approach, we find that regions of instability
always occur above transition that can lead to longitudinal emit-
tance blowup.

II. THEORY
The following dispersion relation can be derived from the

Vlasov equation [1] which expresses the relation between the
impedance and the coherent frequency of the collective mode.

1 =
�e!0
2�

�2
NZn

Z
C

d�
@

@�
 (�)

i[n!(�)�
n]
(1)

�Operated by the Universities Research Association,Inc, under contract with
the U.S. Department of Energy

where N is the number of particles, n is the harmonic number,
Zn is the impedance associated with thenth harmonic, is a nor-
malized distribution function which is a solution to the Vlasov
equation, � is the energy deviation from the synchronous parti-
cle which is referred to by the subscript 0, and 
n is the coherent
frequency. The integral contour is chosen so that 
n is continu-
ous while crossing the real axis. The frequency !(�) in terms of
the dispersion coefficents is given by
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The quantities�0 and�1 are the momentum compaction factors.
We have solved Eqn. 1 for Zn=n assuming a Gaussian distri-

bution
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The integral can be reduced to evaluating the plasma disper-
sion integral which can be expressed in terms of the complex er-
ror function. The details are outlined in the appendix. The results
are
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The quantitiesA;B; �1 and �2 are defined in Eqns. 15-17.

III. CALCULATIONS

A. Stability Diagram

A program was written to plot the real part of Zn=n vs. the
imaginary part for Eqn. 7 for different values of the coherent fre-
quency 
n and different places near transition. Figure 1 is a plot
of the stability diagram below transition. The dots are for a real
coherent frequency and the pluses are for a complex coherent fre-
quency. The beam is stable.

Figure 2 is a plot of the stabilitydiagram above transition. The
dots are for a real coherent frequency and the pluses are for a
complex coherent frequency. There are regions of unstability.



Figure 1. Stability diagram below transition. There are no re-
gions of instability.

Figure 2. Stability diagram above transition.

B. Particle Simulation

Simulations of coherent phenomena in coasting beams were
first reported in 1975 [2]. The essential physics is contained in
the character of the incremental kicks given to the particle’s po-
sition and energy per turn, relative to the central momentum par-
ticle. These may be expressed in the form
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where Zk i the longitudinal impedance and is the Fourier trans-
form of the wake function given by
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It is readily shown that Eqs. (8) and (9), in the case of small
perturbations, lead to the linear dispersion relation for longitu-
dinal modes. We note thae � is a function of � and may go to
zero, which is the formal definition of transition. We keep both
first and second-order corrections to � in our simulation to cor-
respond to the analytical model described previously.

The time domain representation of the wake field is most con-
venient for computational purposes and this is given in the form
[3]
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Figure 3. Particle simulation below transition. The distribution
is stable.

Figure 4. Particle simulationabove transition. An instabilityhas
developed.
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I(�) is the current distribution and !0 is the revolution fre-
quency. The integration over angle is carried out at a fixed time
each turn and may be extended into previous turns for long-range
wakes (sufficiently high Q).

For the simulations in this work, we typically use 104 � 105

particles and invoke periodic boundary conditions associated
with the lowest revolution harmonic of interest. Figure 3 is a
simulation of a beam before transition. The beam is stable con-
firming the results of Figure 1. Above transition, the simulation
(Figure 4) shows that there is instabilityconfirming the results of
Figure 2.

IV. CONCLUSIONS

We have revisited the question of microwave stability at tran-
sition and have shown by including higher-order terms of the ex-
pansion of particle motion around the transition point that parti-



cles which are slightlyoff transition in a distributionof finite mo-
mentum spread will always lead to instability above transition.

V. Appendix
The integral in Eqn. 1 can be written with some factorization
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The integral can be broken up into pieces by the method of partial
fractions and reduces to
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The function
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is the plasma dispersion function which can be evaluated numer-
ically in terms of the complex error function.
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