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Abstract

An electron beam of acooler inanion storagering can be consid-
ered as a medium which responds to fields generated by an ion
beam. Electron density perturbations awaken by the ion beam
act back on it, which can giveriseto instabilities. This reaction
can be described in terms of an impedance introduced in thering
by the electron beam. Longitudinal and transverse impedances
of an electron cool er are derived here, increments and threshol ds
of corresponding instabilitiesare estimated.

[. Introduction

The interaction of an ion beam with different elements of the
vacuum chamber can give rise to coherent instabilities of the
beam. If the beam temperatureis sufficiently high, its collective
modes are stabilized due to the Landau damping. Under cool-
ing, the temperature is going down and the Landau damping is
switching off; but the cooling bringsabout its own decrement in
the collective motion of the beam. However, if the decrement of
some mode is smaller than its increment caused by the interac-
tion with the environment, the beam is either stopped at the in-
stability threshold or lost. So, theseincrementsdetermineamin-
imum cooling rate needed to achieve a beam temperature below
the Landau damping threshold.

In arelativistic case, a significant contribution in the beam -
surrounding interaction is given by a broad-band wall
impedance. For amoderaterelativism~y—1 < 1, thisimpedance
is shown to be exponentially damped , o« exp(—4.8/(57)) [3].
The influence of the wall resistivity istoo small to play any role
in the cooling process. Therefore, the electron cooler itself can
be the main reason of instabilities; thisproblemwas discussed in
Ref.[4], [3], [6], [7].

The longitudinal and transverse impedances of the cooler are
calculated here and shown to be normally orders of magnitude
higher then theresistivewall ones. In theresult, increment rates
of the correspondinginstabilitiescan be higher than typical cool-
ing rates[8], [9], [10], even for rather low ion currents(e. g. ~
few pA).

[l. Main Equations

The dynamics of the magnetized el ectron medium of a cooler
excited by fluctuations of the cooled ion beam can be described
in areference frame by the following set of equations[11]:
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Here n, isan eectron density, 1., 71; are electron and ion den-
Sity perturbations, v, is a perturbation of electron velocity, @ is
an eectrostatic potential. 1ntheimpedance calculationsionsare
assumed to be protons, the impedances are linear responce func-
tionsand do not depend on the charge of exciting particles. Un-
perturbed velocities of the beams are supposed to be equal, the
solenoidal magnetic field assumed to be directed aong the lon-
gitudina axis z everywhere. The former assumptionis justified
if the velocities coincide with a sufficiently good accuracy, the
criterium is discussed in the next chapter. The later assumption
isonly warranted for long-wave perturbations, ka < 1, where k
isalongitudina wavenumber, « isaradius of the el ectron beam.
Itisdemonstrated inthefollowing, that cool er impedances reach
their maxima somewhere in theintermediateregion, ke ~ 1. In
thiswave band the results obtained from Egs.(1) can serve only
as estimations with accuracy about ~ 100%. More accurate re-
sultsin the intermediate band could be found with the electron
beam curvaturein theionsentrance to betaken into account, this
rather complicated problem is not considered here.

The solution of the problem (Egs.1) with proper boundary
conditionscan be presented in the following form:
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Here the subscript 4 = 1,2, ... isa counter of radial wavenum-
bers, + corresponds to waves travelling along and against the
beams, n;; is an amplitude of the ion perturbation, «;, are ze-
roes of aBessdl function J;_1, with ko1 &~ \/2/In(1/(ka)), if
an aperture radius b >> 1/k. In the opposite case of adjoining
aperture, b — a < «a, theradia numbers «;,, are zeroes of J;.

The

connection between el ectron and ion longitudinal wavenumbers
is determined by the Doppler condition, which gives:

qiut :k/(lialu)a (3)

where v isthebeamsvel ocity inthelaboratory frame. Theeigen-
frequencies are described by sound-like dispersion equations:

iy = wea/ (Kiuv),

Uy = gt = wea/Kyy.

(4)

It follows from a zero boundary condition on v, a theion en-
trance, that A;,+ = Aj— = A;,. Theamplitudes 4;, haveto

Wit = iqulua



be found from the zero boundary condition imposed on the den-
sSity perturbation 17, .

[11. Longitudinal Impedance

In this section longitudinal perturbationsare considered, [ =
0. Making use of the orthogonality propertiesof the Bessal func-
tions, the amplitudes of excited modes can be found:

Ay = 2pi0/ (K2 F?), (5)
pio isalinear density perturbation of the ion beam. An average
of theelectric field over atime r of theflight through the cooler
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gives cooler’slongitudinal impedance 2l [1]:
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Real partsof impedancesresponsiblefor instabilitiesare of the
main interest:

Rezll = 9 Z (1 — cos(wusT)) = (1 - COS(WN—T)).
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The contributionsin the real part of the impedance (8) from the
positive(+) and negative (—) waves can be seen to have opposite
signs: an emission of the positivewave takes away alongitudina
momentum of ions, i. e. decel eratesthem; onthe contrary, radia
tion of the negative wave with anegative momentum accel erates
the ion beam. The phase advances of the positive and negative
wavesw,+ T normally can berather close: (w,_- —w,1)7/2 <
1. In this case the (+) and (—) contributionsin the impedance
almost cancel each other, the series over radial modes (8) con-
verges as 1/, which gives:
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where the counter ¢ = 1 isomitted, Z, = 4n/c = 377,
B = v/candw = w.ka/xk isthefrequency of the first radia
mode. The impedance (Eqg.9) linearly increases with the longi-
tudinal wave number k uptok ~ 1/a.

In the short wave band (ka > 1), the part of the electron
beam with the transverse size ~ 1/k only effectively interacts
with ions. It follows, that the impedance achieves the maxi-
mum at ka ~ 1, the later can be estimated from (Eq.9) with
k=24, F=05,:

sin(wr),

IReZN | spax =~ 0.17, “;T, (10)
wherewr > 1 was assumed.
Substituting, for example, n, = 3 - 10" ecm™2, ¢ = Im,

B =wv/c=0.06(Lit
cooler impedance

inthe CRY STAL ring [13]), it givesthe

Rez!l = 10K,

which isthree orders of magnitude more than typical values of
theresistive-wall impedance.

Vel ocitiesof theelectron and ion beams are assumed to be zero
in this calculations. It is warranted, if an additional difference
between phase advances of the (+) and (—) modesintroduced by
adiscrepancy of the velocities dv is smaler then thisdifference
for equal velocities: kdv < a?kv, or dv/v < o?.

The real part of the impedance is responsible for a coherent
instability with an increment [12]:

A = |ku;Rezll/(22,.)],

In(1/(ka;)), u; = c\/Qero

where ry isaclassical radiusof theion, R isaradius of the stor-
agering, a; is aradius of the ion beam, p; isitslinear density.
The increment rate for the coasting Li beam with 2 - 107 parti-
des, L; = 4, ReZll = 10K, isfoundtobe: A = 5s7'.

To damp theinstability and to continue a cooling process, the
cooling rate A needs to be twice more than the increment [4],
[7], A > 10s™! inthelast example.

Zse = 120 LikR/ 3,
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IV. Transverse Impedance

An excitation of transverse dipolemodes (I = 1) of the elec-
tron beam and their back action onionscan bedescribed interms
of atransverse impedance Z+ [2]:

(E,)r = —%/0

where p; isalinear density of theion beam, «; isan amplitude
of itsdeviation along the «— direction. The potential ® isgiven
by Eq.(2) with! = 1. The wave amplitudes 4, are found from
the zero boundary conditions on v, 7, a the entrance, which
give A, = —2p;x:i/(kuaF;) Asymptoticaly, a x, > 1,
F, = (mk,/2)~"/? and A, tendstobeacongant: A, ~ A =
—mp;a;/a. From here, therea part of the transverse impedance
isfound:
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Rezt = 450 Z Bl / dt {sin(w,_t) — sin(w,11)}.
(13)
Thisseriesisdiverging. It meansalargenumber of the contribut-
ing modes and approves an application of theasymptotic > 1.
Anupper limit of the summation g, = m isdetermined by
an account of afinitetransverse size of theion beam «;, it gives
m ~ a/a;. If the difference of &+ phase advances a p ~ m is
small, (Y- — ¥4)/2 = (w7 —w4T)/2 < 1, the expression
(13) can be simplified:
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The result of the summation depends on the phase advance
and itsdifference between neighbor modes A+ at the upper limit
of the summation m ~ a/a;:
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Turning back to Eq.(14) and assuming, for instance, the elec-

tron density r. = 3 - 107 cm™3, the cooler length ¢ = 1 m, the

velocity v = 2-10° cmi/s, theel ectron beam radiusa = 1cm, tak-
ing the sum factor S = 10, the transverse impedance is found:

|ReZ*| ~ 30 MQ/m. (16)

Generdly, areal part of an impedance is responsible for an in-
stability, an increment for the coasting beam is[2]:

AL piroc |ReZ*|
Q. 2o

where (), isabetatron tune, r isthe classical radius of anion of
the beam.

Taking as an example the mentioned Lit! beam, Q, ~ 2, as-
suming the transverseimpedance of ReZ* = 30 MQ/m, thein-
crement iscalculated: A+ = 3s71.

To suppresstheinstability at [ow temperatures, wherethel an-
dau damping does not exist, atransverse cooling rate of the elec-
tron cooler A} has to be twice higher than the increment [4]:
AL/2 > AL, for an example above A+ > 6 s™! hasto be
achieved.

(17)

V. Conclusions

Longitudina and transverse impedances introduced in a stor-
age ring by the eectron beam of an electron cooler have been
found here; both of them occursto be ordersof magnitudehigher
than resistive-wall ones. The corresponding values of coherent
increments can be comparabl e with the cooling decrements even
for such small ion currents, which are usually suggested for crys-
tallization.
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