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Abstract

An electron beam of a cooler in an ion storage ring can be consid-
ered as a medium which responds to fields generated by an ion
beam. Electron density perturbations awaken by the ion beam
act back on it, which can give rise to instabilities. This reaction
can be described in terms of an impedance introduced in the ring
by the electron beam. Longitudinal and transverse impedances
of an electron cooler are derived here, increments and thresholds
of corresponding instabilities are estimated.

I. Introduction

The interaction of an ion beam with different elements of the
vacuum chamber can give rise to coherent instabilities of the
beam. If the beam temperature is sufficiently high, its collective
modes are stabilized due to the Landau damping. Under cool-
ing, the temperature is going down and the Landau damping is
switching off; but the cooling brings about its own decrement in
the collective motion of the beam. However, if the decrement of
some mode is smaller than its increment caused by the interac-
tion with the environment, the beam is either stopped at the in-
stability threshold or lost. So, these increments determine a min-
imum cooling rate needed to achieve a beam temperature below
the Landau damping threshold.

In a relativistic case, a significant contribution in the beam -
surrounding interaction is given by a broad-band wall
impedance. For a moderate relativism
�1 � 1, this impedance
is shown to be exponentially damped , / exp(�4:8=(�
)) [3].
The influence of the wall resistivity is too small to play any role
in the cooling process. Therefore, the electron cooler itself can
be the main reason of instabilities; this problem was discussed in
Ref.[4], [5], [6], [7].

The longitudinal and transverse impedances of the cooler are
calculated here and shown to be normally orders of magnitude
higher then the resistive wall ones. In the result, increment rates
of the corresponding instabilitiescan be higher than typical cool-
ing rates [8], [9], [10], even for rather low ion currents (e. g. �
few �A).

II. Main Equations

The dynamics of the magnetized electron medium of a cooler
excited by fluctuations of the cooled ion beam can be described
in a reference frame by the following set of equations [11]:
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Here �ne is an electron density, ~ne; ~ni are electron and ion den-
sity perturbations, ~ve is a perturbation of electron velocity, � is
an electrostatic potential. In the impedance calculations ions are
assumed to be protons, the impedances are linear responce func-
tions and do not depend on the charge of exciting particles. Un-
perturbed velocities of the beams are supposed to be equal, the
solenoidal magnetic field assumed to be directed along the lon-
gitudinal axis z everywhere. The former assumption is justified
if the velocities coincide with a sufficiently good accuracy, the
criterium is discussed in the next chapter. The later assumption
is only warranted for long-wave perturbations,ka� 1;where k
is a longitudinal wavenumber, a is a radius of the electron beam.
It is demonstrated in the following, that cooler impedances reach
their maxima somewhere in the intermediate region, ka ' 1. In
this wave band the results obtained from Eqs.(1) can serve only
as estimations with accuracy about ' 100%. More accurate re-
sults in the intermediate band could be found with the electron
beam curvature in the ions entrance to be taken into account, this
rather complicated problem is not considered here.

The solution of the problem (Eqs.1) with proper boundary
conditions can be presented in the following form:
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Here the subscript � = 1; 2; ::: is a counter of radial wavenum-
bers, � corresponds to waves travelling along and against the
beams, ~nil is an amplitude of the ion perturbation, �l� are ze-
roes of a Bessel function Jl�1; with �01 �

p
2= ln(1=(ka)); if

an aperture radius b � 1=k. In the opposite case of adjoining
aperture, b� a� a; the radial numbers �l� are zeroes of Jl.

The
connection between electron and ion longitudinal wavenumbers
is determined by the Doppler condition, which gives:

ql�� = k=(1� �l�); �l� = !ea=(�l�v); (3)

where v is the beams velocity in the laboratory frame. The eigen-
frequencies are described by sound-like dispersion equations:

!l�� = �qul�; ul� = �l�v = !ea=�l�: (4)

It follows from a zero boundary condition on ~ve at the ion en-
trance, that Al�+ = Al�� = Al�: The amplitudes Al� have to



be found from the zero boundary condition imposed on the den-
sity perturbation ~ne:

III. Longitudinal Impedance
In this section longitudinal perturbations are considered, l =

0:Making use of the orthogonalityproperties of the Bessel func-
tions, the amplitudes of excited modes can be found:

A� = 2 ~�i0=(�
2
�
F 2
�
); (5)

~�i0 is a linear density perturbation of the ion beam. An average
of the electric field over a time � of the flight through the cooler

hEzi = �
1

�

Z
�

0

@�

@z

����
z=0

dt (6)

gives cooler’s longitudinal impedance Zk [1]:

hEzi� = �e ~�i0Z
k (7)

Real parts of impedances responsible for instabilitiesare of the
main interest:

ReZk = 2
X
�

(1� cos(!�+� ))� (1� cos(!��� ))

�2�F
2
�u�

: (8)

The contributions in the real part of the impedance (8) from the
positive (+) and negative (�) waves can be seen to have opposite
signs: an emission of the positivewave takes away a longitudinal
momentum of ions, i. e. decelerates them; on the contrary, radia-
tion of the negative wave with a negative momentum accelerates
the ion beam. The phase advances of the positive and negative
waves !��� normally can be rather close: (!���!�+)�=2�
1: In this case the (+) and (�) contributions in the impedance
almost cancel each other, the series over radial modes (8) con-
verges as 1=�2; which gives:

ReZk = �4!�
sin(!� )

�2F 2v
= �

Z0!�

���2F 2
sin(!� ); (9)

where the counter � = 1 is omitted, Z0 = 4�=c = 377
;
� = v=c and ! = !eka=� is the frequency of the first radial
mode. The impedance (Eq.9) linearly increases with the longi-
tudinal wave number k up to k ' 1=a:

In the short wave band (ka > 1), the part of the electron
beam with the transverse size ' 1=k only effectively interacts
with ions. It follows, that the impedance achieves the maxi-
mum at ka ' 1; the later can be estimated from (Eq.9) with
� = 2:4; F = 0:5; :

jReZkjmax ' 0:1Z0
!e�

�
; (10)

where !� � 1 was assumed.
Substituting, for example, ne = 3 � 107 cm�3; g = 1m,

� = v=c = 0:06 (Li+17 in the CRYSTAL ring [13]), it gives the
cooler impedance

ReZk = 10K
;

which is three orders of magnitude more than typical values of
the resistive-wall impedance.

Velocities of the electron and ion beams are assumed to be zero
in this calculations. It is warranted, if an additional difference
between phase advances of the (+) and (�) modes introduced by
a discrepancy of the velocities �v is smaller then this difference
for equal velocities: k�v < �2kv; or �v=v < �2:

The real part of the impedance is responsible for a coherent
instability with an increment [12]:
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where r0 is a classical radius of the ion,R is a radius of the stor-
age ring, ai is a radius of the ion beam, ��i is its linear density.
The increment rate for the coasting Li beam with 2 � 107 parti-
cles, Li = 4; ReZk = 10K
; is found to be: � = 5s�1.

To damp the instability and to continue a cooling process, the
cooling rate �k needs to be twice more than the increment [4],
[7], �k > 10s�1 in the last example.

IV. Transverse Impedance

An excitation of transverse dipole modes (l = 1) of the elec-
tron beam and their back action on ions can be described in terms
of a transverse impedance Z? [2]:
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where ��i is a linear density of the ion beam, xi is an amplitude
of its deviation along the x� direction. The potential� is given
by Eq.(2) with l = 1: The wave amplitudes A� are found from
the zero boundary conditions on ~ve; ~ne at the entrance, which
give: A� = �2 ��ixi=(��aF

2
�) Asymptotically, at �� � 1;

F� = (���=2)
�1=2 and A� tends to be a constant: A� ' A =

�� ��ixi=a: From here, the real part of the transverse impedance
is found:
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(13)
This series is diverging. It means a large number of the contribut-
ing modes and approves an application of the asymptotic�� 1:

An upper limit of the summation �max = m is determined by
an account of a finite transverse size of the ion beam ai; it gives
m ' a=ai: If the difference of � phase advances at � ' m is
small, ( � �  +)=2 = (!�� � !+� )=2 < 1; the expression
(13) can be simplified:

ReZ? = �
Z0!e�

4�a
S; S =

mX
�=1

�
sin(!�� ) if !�� � 1
!��=2 if !�� � 1

(14)
The result of the summation depends on the phase advance  

and its difference between neighbor modes� at the upper limit
of the summation m ' a=ai:
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Turning back to Eq.(14) and assuming, for instance, the elec-

tron density �ne = 3 � 107 cm�3; the cooler length g = 1 m, the
velocity v = 2�109 cm/s, the electron beam radiusa = 1cm, tak-
ing the sum factor S = 10; the transverse impedance is found:

jReZ?j ' 30 M
=m: (16)

Generally, a real part of an impedance is responsible for an in-
stability, an increment for the coasting beam is [2]:

�? =
��ir0c


Qb

jReZ?j
Z0

; (17)

whereQb is a betatron tune, r0 is the classical radius of an ion of
the beam.

Taking as an example the mentioned Li+17 beam, Qb ' 2; as-
suming the transverse impedance of ReZ? = 30 M
/m, the in-
crement is calculated: �? = 3 s�1:

To suppress the instabilityat low temperatures, where the Lan-
dau damping does not exist, a transverse cooling rate of the elec-
tron cooler �?c has to be twice higher than the increment [4]:
�?c =2 > �?; for an example above �?c > 6 s�1 has to be
achieved.

V. Conclusions

Longitudinal and transverse impedances introduced in a stor-
age ring by the electron beam of an electron cooler have been
found here; both of them occurs to be orders of magnitude higher
than resistive-wall ones. The corresponding values of coherent
increments can be comparable with the cooling decrements even
for such small ion currents, which are usually suggested for crys-
tallization.
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