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Abstract

Numerical simulations of transverse coupled bunch instabilities
caused by the resistive wall of the vacuum chamber are pre-
sented. These simulations confirm the results obtained anal yti-
cally and extend them to cases which are not easily accessible by
analytical methods.

I. INTRODUCTION

Transverse coupled bunch oscillations in a storage ring are
driven by wake fields due to the interaction with cavity-like
structures or with the resistive wall of the vacuum vessel. Con-
centrating onthelatter case, thedipolewake functionfor acylin-
drical vacuum chamber of length L, radiusd and conductivity
(in cgs units) isgiven by (seeeg. [1])

vmz):—%ﬁ%L &)

where c isthevelocity of light and z isthedistance behind the
charge causing the wake.

Due to its strong dependence on the chamber size, the resis-
tivewall effect isin particular of interest for modern synchrotron
light sources with small wiggler/undulator gaps. Inthiscase, the
radius b in equation 1 is replaced by an effective half-height of
theflat vacuum chamber.

In a system of M bunches, each containing N particles, a
bunch ¢ oscillates according to the equation of motion

where r, isthe classica eectron radius, ~ the Lorentz fac-
tor, ¢, therevolutiontime and ¢ ¢;; the distance a which bunch ;
followsi. The term including the wake functions summed over
all bunches and over all previous revolutions causes the oscil-
lation to grow or decrease, depending on the phase relationship
between the bunches.

In the following discussion, the BESSY |1 electron storage
ring servesas an example. BESSY 11 isa1700 MeV synchrotron
light source currently under construction at Berlin[2]. The stor-
age ring will be 240 m in circumference (t, = 0.8 uSs) and can
befilled with max. 400 bunches. Inthiscase, the coupled bunch
system has 400 oscill ation modes, some of which may beexcited
and some damped. If the growth of any mode exceeds the rate
of radiation damping or Landau damping, the beam will be un-
stable.
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Figure. 1. Growth rate of transverse coupled bunch instabilities
asfunction of thevertical betatrontuner (left) and of chromatic-

ity § = Av/(Ap/p) (right).

1. ANALYTICAL EVALUATION

Fourier transformation of equation 2 into the frequency do-
main yields an analytical expression for the growth rate of
the most unstable multibunch mode, provided the bunches are
equally spaced and their motion is a harmonic oscillation (w;
congtant). Application of thiswell-known theory [3] leadsto the
following genera results:

A. Single Bunch Mode

A single bunch has only one oscillation mode which isdriven
by its own wake from previous revolutions. This mode is
damped if thefractional part of the tuned isbelow 0.5; for § >
0.5 the beam isunstable.

Considering the finite size of the bunch has severa conse-
guences: As an extended abject, the bunch has internal modes
{. Furthermore, a finite bunch length implies a finite spectrum.
Its central frequency isafunction of the chromaticity €. A small
positive chromaticity is sufficient to stablize the! = 0 mode
(head-tail effect), whereastheweaker ! > 0 modesrequirelarger
values of ¢ to be damped.

B. Multiple Bunches

For any tune, half of the multibunch modes are damped and
half are unstable. The growth rate of the most unstablemode fol -
lowsroughly 1/+/8. Thisis shown in theleft part of figure 1 for
the BESSY |l storage ring, assuming an aluminium chamber in
theinsertion device region and a half-height of 6 = 0.01 m.

A large positive chromaticity reduces the growth rate and can
even stabilize all multibunch modes for { = 0, whilethe! = 1
mode is still unstable, as shown in theright part of figure 1.



I1l. TIME DOMAIN SIMULATION (HARMONIC
OSCILLATION)

A numerical simulation of the growing instability allows to
study itstime evolution, starting from different initial configura-
tionsand under theinfluence of different damping mechanisms.
Furthermore, asimulation isrequired in cases where the growth
rate cannot be determined analytically.

The simulation presented in this section maintaines the as-
sumption of a simple harmonic motion. It is meant to study
the case of a fractiona bunch filling and the effect of two
damping mechanisms: (i) Radiation damping, where a factor
exp(—t,/7r) is applied to the oscillation amplitudes after each
turn, thus neglecting the stochastic nature of the radiation pro-
cess. (ii) A non-linear tune shift with the amplitude Ay ~ z2.

Equation2isiterated for all bunchesintime stepsof 2 ns(~60
steps per oscillation period). If al bunches perform a harmonic
oscillation with the nearly unperturbed betatron frequency, the
force experienced by a particular bunch ¢ (given by the sumin
eg. 2) just oscillates with the same frequency. In the course of
the simulation, its amplitude and phase have to be recal culated
from time to time, which requires little computational effort.

A. Time Evolution

Starting from a random configuration, the 400 bunches con-
sidered in figure 2 behave very differently. Some grow in ampli-
tude, while others nearly stop oscillating. It takes about 0.2 ms
for thebunchesto " find” the most unstable mode ;. at whichthey
oscillate with the same exponentially growing amplitude and a
fixed relative phase of 271/ M between adjacent bunches. Once
this state is reached, the growth rate in the ssimulation is consis-
tent with the analytical result. If the bunches are initiated with
the proper phase rel ationship, the exponentia growth startswith-
out delay.

B. Damping

The figures 2b-2d show the influence of damping on the sys-
tem described above. In figure 2b, the growth of the instability
is slowed down by radiation damping.

In figure 2c, a tune shift with amplitude has been introduced.
All amplitudes grow up to a certain value, a which they start to
diverge and their phase rel ationship becomes distorted. The av-
eraged amplitude, however, remains constant.

A combination of both damping effectsleadstoahighlyirreg-
ular motion, as shown in figure 2d.

C. Fractional Bunch Filling

If thestorageringisfractionally filled with bunchesin order to
leave an ion clearing gap, the coupled bunch oscillationsare not
easily described anaytically. It hasbeen shownthat —for agiven
total current —the complete filling represents the worst case [4].

In atime domain simulation with 320 bunchesin 400 rf buck-
ets(figure 3), thebunches oscillate with different amplitudesand
the spectrum shows a fine structure which is not present in the
case of acompletefilling. However, thegrowthrate of theinsta:
bility, the phase relationship between the bunches and the gross
features of the spectrum are the same for both cases.
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Figure. 2. Smallest, largest and average amplitudein a system
of 400 evenly spaced bunches with a) no damping, b) radiation
damping, ¢) tune shift with amplitude, d) both damping effects.

V. TIME-DOMAIN SIMULATION (BETATRON
OSCILLATION)

Inaredigtic betatron oscillation, thefrequency w; in equation
2 depends on the position in the | attice. Therefore, the phase re-
lationship between bunches changes dl the time, which should
reduce the effective driving force.

In order to simulatethiseffect, all bunchesare tracked through
the magnetic lattice using linear transfer matrices for each time
step (2 ns, corresponding to 0.6 m). To prevent the effect in
question from being obscured by non-linear lattice effects, sex-
tupol ekickswere not applied. The consequences of thetune shift
caused by sextupolefieldswere studied in [5].

With thewake function of equation 1 inserted into equation 2,
the driving force for bunch ¢ is essentialy given by
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N oo
Z::TLZ::V Zy/to+n j(t_tij

Keepingtrack of all bunch positionsover many turnsand eval-
uating the twofold sum for all bunches at each time step would
clearly require too much computer memory and time. However,
a simplification can be made by expessing the transverse posi-
tion of bunch j at the n*? previous passage as

ti;) { cos(nd;) + ozsin(néj)}
tij) Bsin(néj), (4)
where « and /5 are the Twiss parameters at the location of

bunch j, and ¢; is the phase advance over one revolution back-
ward in time. Then, equation 3 can be rewritten as
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Figure. 3. Amplitudes (upper part) and the Fourier transformed
signal seen at afixed location of the storage ring (lower part)
for a) 400 evenly spaced bunches, and b) 320 bunches in 400 rf
buckets with the same total current.

cos(nd;)

PO

; sin(nd;)
{Z:: Vi m/to+”}
% (aaslt = tig) + Bt —137)) ] 5)

This allows to perform the sum over n beforehand and store
theresult for dl required values of ¢;; and ¢; in alook-up table.
Thisisjustified if J; is constant over a reasonable time scale —
an assumption also made in the analytica theory.

A. First Results

In the simulation shown in figure 4, a system of 400 evenly
spaced bunches was initiated with a phase relationship corre-
sponding to the most unstable mode. The amplitudes first di-
verge and grow more slowly than they do in the harmonic oscil-
lator model. The relative phases aso diverge and fill a certain
range (figure 4b), while the growthrate increases and settlesat a
value well below the theoretical rate (figure 4c).

In conclusion, an improved description of coupled bunch os-
cillationshas been obtained and further refinements of the mode!
are within reach, in particular the inclusion of damping mech-
anisms: (i) radiation damping, (ii) sextupole kicks to produce
the tune shift that was included rather arbitrarily in the harmonic
oscillator model, and (iii) the head-tail effect by splitting the
bunches into macro-particles.
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Figure. 4.  Transverse resistive wall instability with 400
bunches, assuming aharmonic motion (dashed lines) and amore
realistic betatron oscillation (solid lines): a) smallest, largest and
average amplitude, b) smallest and larges phase difference be-
tween adjacent bunches, and c) growth rate versus time.
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