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Abstract

Numerical simulations of transverse coupled bunch instabilities
caused by the resistive wall of the vacuum chamber are pre-
sented. These simulations confirm the results obtained analyti-
cally and extend them to cases which are not easily accessible by
analytical methods.

I. INTRODUCTION
Transverse coupled bunch oscillations in a storage ring are

driven by wake fields due to the interaction with cavity-like
structures or with the resistive wall of the vacuum vessel. Con-
centrating on the latter case, the dipole wake function for a cylin-
drical vacuum chamber of length L, radius b and conductivity�
(in cgs units) is given by (see e.g. [1])
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where c is the velocity of light and z is the distance behind the
charge causing the wake.

Due to its strong dependence on the chamber size, the resis-
tive wall effect is in particular of interest for modern synchrotron
light sources with small wiggler/undulatorgaps. In this case, the
radius b in equation 1 is replaced by an effective half-height of
the flat vacuum chamber.

In a system of M bunches, each containing N particles, a
bunch i oscillates according to the equation of motion
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where r� is the classical electron radius, 
 the Lorentz fac-
tor, t� the revolution time and c tij the distance at which bunch j
follows i. The term including the wake functions summed over
all bunches and over all previous revolutions causes the oscil-
lation to grow or decrease, depending on the phase relationship
between the bunches.

In the following discussion, the BESSY II electron storage
ring serves as an example. BESSY II is a 1700 MeV synchrotron
light source currently under construction at Berlin [2]. The stor-
age ring will be 240 m in circumference (t� = 0:8 �s) and can
be filled with max. 400 bunches. In this case, the coupled bunch
system has 400 oscillation modes, some of which may be excited
and some damped. If the growth of any mode exceeds the rate
of radiation damping or Landau damping, the beam will be un-
stable.
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Figure. 1. Growth rate of transverse coupled bunch instabilities
as function of the vertical betatron tune� (left) and of chromatic-
ity � = ��=(�p=p) (right).

II. ANALYTICAL EVALUATION

Fourier transformation of equation 2 into the frequency do-
main yields an analytical expression for the growth rate of
the most unstable multibunch mode, provided the bunches are
equally spaced and their motion is a harmonic oscillation (!i
constant). Application of this well-known theory [3] leads to the
following general results:

A. Single Bunch Mode

A single bunch has only one oscillation mode which is driven
by its own wake from previous revolutions. This mode is
damped if the fractional part of the tune � is below 0.5; for � >
0:5 the beam is unstable.

Considering the finite size of the bunch has several conse-
quences: As an extended object, the bunch has internal modes
l. Furthermore, a finite bunch length implies a finite spectrum.
Its central frequency is a function of the chromaticity �. A small
positive chromaticity is sufficient to stablize the l = 0 mode
(head-tail effect), whereas the weaker l > 0modes require larger
values of � to be damped.

B. Multiple Bunches

For any tune, half of the multibunch modes are damped and
half are unstable. The growth rate of the most unstable mode fol-
lows roughly 1=

p
�. This is shown in the left part of figure 1 for

the BESSY II storage ring, assuming an aluminium chamber in
the insertion device region and a half-height of b = 0:01 m.

A large positive chromaticity reduces the growth rate and can
even stabilize all multibunch modes for l = 0, while the l = 1
mode is still unstable, as shown in the right part of figure 1.



III. TIME DOMAIN SIMULATION (HARMONIC
OSCILLATION)

A numerical simulation of the growing instability allows to
study its time evolution, starting from different initial configura-
tions and under the influence of different damping mechanisms.
Furthermore, a simulation is required in cases where the growth
rate cannot be determined analytically.

The simulation presented in this section maintaines the as-
sumption of a simple harmonic motion. It is meant to study
the case of a fractional bunch filling and the effect of two
damping mechanisms: (i) Radiation damping, where a factor
exp(�t�=�R) is applied to the oscillation amplitudes after each
turn, thus neglecting the stochastic nature of the radiation pro-
cess. (ii) A non-linear tune shift with the amplitude �� � x2.

Equation 2 is iterated for all bunches in time steps of 2 ns (�60
steps per oscillation period). If all bunches perform a harmonic
oscillation with the nearly unperturbed betatron frequency, the
force experienced by a particular bunch i (given by the sum in
eq. 2) just oscillates with the same frequency. In the course of
the simulation, its amplitude and phase have to be recalculated
from time to time, which requires little computational effort.

A. Time Evolution

Starting from a random configuration, the 400 bunches con-
sidered in figure 2 behave very differently. Some grow in ampli-
tude, while others nearly stop oscillating. It takes about 0.2 ms
for the bunches to ”find” the most unstable mode� at which they
oscillate with the same exponentially growing amplitude and a
fixed relative phase of 2��=M between adjacent bunches. Once
this state is reached, the growth rate in the simulation is consis-
tent with the analytical result. If the bunches are initiated with
the proper phase relationship, the exponential growth starts with-
out delay.

B. Damping

The figures 2b-2d show the influence of damping on the sys-
tem described above. In figure 2b, the growth of the instability
is slowed down by radiation damping.

In figure 2c, a tune shift with amplitude has been introduced.
All amplitudes grow up to a certain value, at which they start to
diverge and their phase relationship becomes distorted. The av-
eraged amplitude, however, remains constant.

A combination of both damping effects leads to a highly irreg-
ular motion, as shown in figure 2d.

C. Fractional Bunch Filling

If the storage ring is fractionally filled with bunches in order to
leave an ion clearing gap, the coupled bunch oscillations are not
easily described analytically. It has been shown that – for a given
total current – the complete filling represents the worst case [4].

In a time domain simulation with 320 bunches in 400 rf buck-
ets (figure 3), the bunches oscillate with different amplitudes and
the spectrum shows a fine structure which is not present in the
case of a complete filling. However, the growth rate of the insta-
bility, the phase relationship between the bunches and the gross
features of the spectrum are the same for both cases.

Figure. 2. Smallest, largest and average amplitude in a system
of 400 evenly spaced bunches with a) no damping, b) radiation
damping, c) tune shift with amplitude, d) both damping effects.

IV. TIME-DOMAIN SIMULATION (BETATRON
OSCILLATION)

In a realistic betatron oscillation, the frequency !i in equation
2 depends on the position in the lattice. Therefore, the phase re-
lationship between bunches changes all the time, which should
reduce the effective driving force.

In order to simulate this effect, all bunches are tracked through
the magnetic lattice using linear transfer matrices for each time
step (2 ns, corresponding to 0.6 m). To prevent the effect in
question from being obscured by non-linear lattice effects, sex-
tupole kicks were not applied. The consequences of the tune shift
caused by sextupole fields were studied in [5].

With the wake function of equation 1 inserted into equation 2,
the driving force for bunch i is essentially given by
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Keeping track of all bunch positionsover many turns and eval-
uating the twofold sum for all bunches at each time step would
clearly require too much computer memory and time. However,
a simplification can be made by expessing the transverse posi-
tion of bunch j at the nth previous passage as

xj(t� tij � nt�) = xj(t� tij)
�
cos(n�j) + � sin(n�j)

	
+ x0j(t� tij) � sin(n�j); (4)

where � and � are the Twiss parameters at the location of
bunch j, and �j is the phase advance over one revolution back-
ward in time. Then, equation 3 can be rewritten as



Figure. 3. Amplitudes (upper part) and the Fourier transformed
signal seen at a fixed location of the storage ring (lower part)
for a) 400 evenly spaced bunches, and b) 320 bunches in 400 rf
buckets with the same total current.
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This allows to perform the sum over n beforehand and store
the result for all required values of tij and �j in a look-up table.
This is justified if �j is constant over a reasonable time scale –
an assumption also made in the analytical theory.

A. First Results

In the simulation shown in figure 4, a system of 400 evenly
spaced bunches was initiated with a phase relationship corre-
sponding to the most unstable mode. The amplitudes first di-
verge and grow more slowly than they do in the harmonic oscil-
lator model. The relative phases also diverge and fill a certain
range (figure 4b), while the growth rate increases and settles at a
value well below the theoretical rate (figure 4c).

In conclusion, an improved description of coupled bunch os-
cillations has been obtained and further refinements of the model
are within reach, in particular the inclusion of damping mech-
anisms: (i) radiation damping, (ii) sextupole kicks to produce
the tune shift that was included rather arbitrarily in the harmonic
oscillator model, and (iii) the head-tail effect by splitting the
bunches into macro-particles.

Figure. 4. Transverse resistive wall instability with 400
bunches, assuming a harmonic motion (dashed lines) and a more
realistic betatron oscillation (solid lines): a) smallest, largest and
average amplitude, b) smallest and larges phase difference be-
tween adjacent bunches, and c) growth rate versus time.
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