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Abstract

Resonance excitation of longitudinal plasma electrostatic wave
by double-frequency laser radiation is investigated numerically
to study in detail conditions of particle beat wave accelera-
tion. The computer simulation is based on the highly special-
ized code SUR, using splitting technique. Both the space uni-
form and slightly non-uniform cases are investigated. Maintain-
ing of phase synchronism between accelerated particles and ex-
ited longitudinal wave is provided by a choice of density plasma
profile.

I. INTRODUCTION

The method of charged particle acceleration by charge den-
sity waves in plasmas and in non-compensated charged parti-
cles, which Ya.B. Fainberg proposed in 1956 [1], seems to be
one of the promising methods of collective acceleration [2],
[3]. The primary challenge in all plasma acceleration schemes
is to produce a substantial plasma density perturbation with a
phase velocity to be close to velocity of light c. At present the
most promising concepts are plasma beat–wave acceleration and
plasma wake field acceleration.

In the plasma beat–wave acceleration scheme [4], two coprop-
agating laser beams with slightly different frequencies are in-
jected into a plasma. C. Toshi at al (1993) obtained the electric
field strengths of the charge–density wave of 0:7�107 V

cm
, and de-

tected the accelerated electrons with an energy of 9:1MeV (in-
jection energy was 2MeV ). The resonant plasma density was
8:6 � 1015cm�3, but already in January 1994, the 1cm length,
the electrons acquired 28MeV .

Resonance excitation of longitudinal plasma electrostatic
waves by electromagnetic waves is investigated numerically
with help of the SUR code. The SUR code is based on solving the
finite–difference analogs of the Maxwell and Vlasov–Fokker–
Planck equations through the successive use of the splitting tech-
nique over physical processes and variables of phase space.

In order to economize our machine time, we do not yet pose
the problem to be solved with its real parameters [5].

II. COMPUTATIONAL MODEL

Consider a linearly polarized electromagnetic wave propagat-
ing in thex direction with the electric vector ~E directed along the
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y–axis and the magnetic field vector ~B oriented along the z–axis
(p–polarization). The action of such a wave onto plasma parti-
cles can give rise only to the Vx and Vy velocity components. In
the case where the distribution function does not depend initially
on y and z, three phase space coordinates x; Vx; Vy are sufficient
to describe subsequent plasma behavior; the relevant distribution
function is f(~r; ~p) = f(x; Vx; Vy)�(Vz).

The plasma electron dynamics may by described the Vlasov
equation
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This equation is solved by a variant of the method of splitting
over phase–space coordinates[6].

Effects due to charged–particle collisions in the plasma can-
not significantly affect the time of electromagnetic wave prop-
agation through the simulated system. Because of this, we do
not take the Fokker–Plank collision term in the equation into ac-
count.

The similar equation might be written for the plasma ions;
however, in these computations the ions, being heavy compared
to electrons, were assumed to be motionless.

The longitudinal electric fieldEx is determined from the Pois-
son equation, which, in one–dimensional case, can be written as

Ex = ExjL + 4�e

xZ
xL

(ni(�)� ne(�))d�;

where ni(x) is the ion background; ne(x; t) =
R
fd~p is the

electron density; xL and ExjL represent the coordinate and field
value on the system left boundary, respectively.

The transverse electromagnetic field must be satisfy the
Maxwell equations:
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where jy = �e
R
feVyd~p is the current density. The latter two

equations can be written in a form more convenient for numerical
computations:



Figure 1. Temporal dependence of the maximum amplitude
of the perturbed electron density dn for different plasma den-
sity profiles along the x-axis: (1)�n = 0; (2,3) rising profiles:
�n = 0:2 and 0:5; (4) descending profile: �n = 0:2
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where F� = Ey �Bz. This enables one to employ the integra-
tion over characteristics technique.

The simulated system represent a “plasma in a box” with to-
tal particle reflection from the rated–region boundaries. At the
same time, these boundaries are radiation–transparent, radiation
entering through the left system boundary and emerging through
the right one. This is provided by the assignment of boundary
conditions:

F+
jL = F (t)[F1 sin(!1t+ �1) + F2 sin(!2t + �2)];

F�jR = 0

where the subscripts jL and jR denote the values of quantities
on left–hand and right–hand boundaries, respectively. As the
charge is not build up on the “walls” and the plasma is neutral
as a whole, we can assume ExjL = ExjR = 0.

At the initial time, the values of ion and electron density are
defined as ni(x) = ne(x; t = 0) = n0 for the uniform plasma
profile and

ni(x) = ne(x; t = 0) = n0 � �n(
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for a non–uniform one.
To describe the simulated system in dimensionless variables,

let us rescale the time, length, velocity, electric field strength, and
density by introducing the scale units!�1p ; c=!p; c;mc!p=e and
n0 respectively. Here

!p =

r
4�n0e2

m

represents the electron plasma frequency. The initial parameters
of the problem are the frequencies !1 and !2 of the two incident
electromagnetic waves, their dimensionless amplitudes
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Figure 2. Spatial dependence of the longitudinal electric field
Ex for the plasma density rising (�n = 0:2) x–profile

Figure 3. Spatial dependence of the longitudinal electric field
Ex for the plasma density rising (�n = 0:5) x–profile

the system length L, the electron thermal velocity VTe , and the
initial plasma density profile (fixed ion density profile). In a
given run we considered the following parameters values:

!1 = 4; !2 = 5;

�1 = 0:1; �2 = 0:08;

L = 400; VTe = 0:1;� = 0:2;

F (t) = 1
1+exp(�0:5(t�10))

;

�1 = �2 = 0:

The difference between the runs consisted in the value and di-
rection of the profile variation and in the se cases we took �n =
0; 0:2; 0:5.

III. RESULTS

Figure 1 presents the perturbated electron density maximum
amplitudesdn as a function of time t!p for the uniform (curve 1),
rising (curves 2 and 3) and descending (curve 4) plasma profile
along x�axis. One can see that, at the early stage, a rise of dn
is in good agreement with theoretical results obtained in [7], [8],
[9]
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Then the amplitude dn growth slows down and all the curves
saturate at the level of about 0:1n0. The simulated saturation



Figure 4. Spatial dependence of the longitudinal electric field
Ex for the plasma density descending (�n = 0:2) x–profile

level is considerably lower then the theoretically estimated one
due to the relativistic shift of the Langmuir frequency obtained
for cold plasma in [7], [8], [9]:

dsatn =
3

r
16

3
�1�2 � 0:34

For nonuniform density profiles, the saturation level is higher
than for the uniform one (curve 1). This is caused by the fact,
for the case of uniform profile, the plasma density was chosen to
ensure the exact equality of the Langmuir frequency to the beat
frequency !s = !1�!2. During the transition to a steady state,
the location of the perturbed electron density maximum is de-
termined by the distance from the left boundary to some point,
where the plasma density has such a value that the difference be-
tween the electron Langmuir frequency and the beat frequency is
equal to a quantity �!opt (optimal frequency shift) proportional
to (�1�2)2=3!s.

Figures 2-4 shows the steady-state spatial distributions of the
longitudinal electric fieldEz for the plasma density profile rising
(Fig.2 and 3) and descending (Fig.4) along the x–axis. It is seen
that the longitudinal electric field reaches its maximum at points
where the local plasma frequency exceeds the beet frequency by
a value of �!opt determined in its turn bu the amplitudes and fre-
quencies of electromagnetic waves. The plasma density �10%
variation within the rated region results in an acceptable spatial
distribution of Ex. This allows one to hope (see Fig.4) that the
descending plasma profile may be of practical use in this beat-
wave acceleration method: an appropriate density gradient may
help to prolong the accelerated particle synchronism with a lon-
gitudinal beat wave [10].
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