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ABSTRACT for a microscopic description based on the Vlasov-equation. We

. . . . assume that full energy of particles conserved
Equilibria of high-current electron beams in an axial mag- gyorp

netic field are considered at the base of the approach [1] for the H =y + ¢ = const (1)
two cases of shielded and immersed cathodes. A general wave
equation in the electrostatic approximation, which is valid in ar§his means the emission of particles from an equipotential cath-
selfconsistent equilibrium, was derived under the only assunfsle) and that the conservation law for the canonical angular
tion of constancy of full particle energy. This equation suppl&2omentum is valid
ments general steady state equation [1] and allows to consider . .
different equilibria and their wave properties in closed manner. Po =T (s + Ay) = const )
(this means the conservation of axial symmetry), whigye=
Ay (r) at the source.
. INTRODUCTION Three cases, namely, B, = 0, 2) P, = const, and
. L . . 3) Py = Bor?/2 allow to simulate three cases of emission,
For proper investigation of wave Processesin REBItis neﬁélmely, 1) magnetically shielded source, 2) hollow beam forma-
essary to use models of beam equilibria that could be solvgg, 3 nched from a cathode surface coinciding with a magnetic
analytically and would be consistent with an experimental cofyy surface, and 3) immersed source with a cathode immersed
dition. Often, the analytical solvability of a model is beyond itg, the |ongitudinal magnetic field. These two physical relations

conformity to the real conditions. A general wave equation f@fljow to derive the next general set of equations [1]
selfconsistent equilibria is also important as it permits to com-

pare the influence of different cross terms that can be omitted 2y + v P\’ — 0 3)
because of approximate solution of the steady state problem. In vtz v vz ’
view of space limitations only these two problems are discussed. 0 v2u P\

(ry“vy) —_— = <r—> = 0,

where the prime denotelydr. For the first two cases we get
Il. LAMINAR FLOWS EQUILIBRIA

In cylindrical coordinates rp, z, under the conditions ) ) )
3/dt = 9/dz = 3/80 = 0, steady state equilibria of a beam! h€ constant equals zero (i.@; = const) in the first case,

in the longitudinal magnetic fiel,o are described by the fol- Which corresponds to the model of a solid beam emitted from
lowing equations a shielded source and in the second case, which corresponds to

a foilless magnetic-insulation diode under the conditions of no

ry?uv, = const (4)

yv2 central conductor and no axial current inside the drift region.
- T Er +vB; —v,By =0; General analytical solutions in these two cases were found in [2]
and later in [1]. We do not reproduce them here. Note that in
dB, 1d 1d :
ar = —4rpvy; Far By = 4mpvy; Far E; = 4np, the second case the general solution was represented by Jakoby-

functions. Simplified solution in a case of practical interest,
wherev, = wor, v, are equilibrium velocitiespy > 0 is the Nnamely, thin-walled annular beam, can be represented by simple
angular velocity of the beam rotation as a whoiethe charge functions [3], which is useful for investigating wave processes.

density,B, < 0 the full longitudinal magnetic fieldg,, B, are 'For an immersed sourde; depends on the radius, @
varies across the emitting surface. Unfortunately, itisimpossible

selffields of the beamy = 1/ v 1- U92 -7 _ .. toconsiderthe transient region between the cathode and the drift
The general macroscopic fluid equations describing thggion in the case. We can assume that there is no crossing of

equilibrium of a cylindrical beam allow many solutions. Anyrajectories and that radiusfrom which an electron is launched

two functions can be chosen arbitrarily or two additional relat the cathode and radius r of this electron inside the drift region

tions are necessary to close this selfconsistent set of equatisaugsfy the simple relation = ar., whereo is constant.

that permit to simulate the experimental circumstances. Here It can be shown that for this case equilibria with= const

we shall follow the approach [1]. It combines a macroscopir wg = const are impossible. Moreover, the approximate solu-

cold fluid description and conservation laws which are in usien shows that due to beating no homogeneity along z stationary



states exists if the beam is launched in a drift region with smallghere® = ¢ /L, L = w — kv, — muy /r. Functionsk describe
magnetic field than in the cathode region. The nature of thewgequilibrium state and take the forms
beats is the interaction of the beam with Be- component of

_ / _ / .

the field. Fast cyclotron rotation of an electron around a force Fi = By +/(v9yo) + veVo//f = Pe/f.,

line of the magnetic field is affected by the rotation of the electron F2 = (v20) — !390 = —(Fy/D)vg /vz;

under the action of thB; - component, which is paramagneticin Fs = Fi— (v —ve/r); (6)
a decreasing field and diamagnetic in an increasing field. Inside Fa = Fo— vy

a drift region the beam as a whole always rotates diamagnet- Fs = FiF3+ FF,,

ically and the rotation induced in a decreasing field produces

mismatching effects, which are seen as free oscillations of fadvs F1 +v.F> = 0. Eqn. (5) is of general form for the given
beam envelope. class of equilibrium states and is valid for solid as well as for

hollow beams [4].

Thus, the ggne(al a}pproach allows to simulate conqlltlons Taking into account the second conservation law (2), which
of beam generation in high-current accelerators and provide Wg

; . S . s used in the first part, one can redefine functigrisy means
basis for analytical investigation of wave processes in the frargfape_ These expressions are in the right-hand member of equa-
of stringent selfconsistent equilibria at least in two cases: a sofighs (6).
beam @ = 0) and a hollow beamR, = const). It is rather Equation (5) has its simplest form under the assumption that
difficult to use the model of an immersed beam, which is @8, — const, which corresponds to the= constant class (solid
practical interest due to the absence an analytical solution. Ibisam launched from shielded source and hollow beam launched
shown below that an ordinary simplification that could allow tfrom foilless magnetic insulation diode). In the case
find an analytical solution leads to the loss of necessary infor-
mation about the equilibrium state and the same result in this Fi=F=FR=FR=0 F=—yy,—
approximation can describe initially different equilibria. )

Moreover, we do not consider here a transition region th@#d equation (5) has the form
can have fantastic geometry. The comparison of analytical ang 5 w2\ §d m2 w2
numerical results with the results of computer simulation for-—r (L2 - —p> — - CD{ (—2 + k2) (L2 - —p> +
real geometry shows that to form a beam with parameters clode’” Yo/ o r Yo
to those for given model, the form of the magnetic field in the @5 /m 2 La oL
transition region must be rather complicated and precise. v <r_“9 + k”2> - }

Vo

)

— _r R
ror or
It is an obvious nonessential simplification due to transition to
thev, = 0 system.

When the beam is launched from an immersed source in

=0. @)

Yo

[ll. GENERAL WAVE EQUATION IN

ELECTROSTATIC APPROXIMATION magnetic fieldBo we get
U
The electrostatic approximation is used rather often to in- F1=Bo F2= —Bov—e; (8)
vestigate electrostatic instabilities and slow waves. Itis assumed ) z
thatB = V x E ~ 0 andE = —V¢ = {—d¢/or,img/r, ikz} Fs = Bo[Bo(1+ ) — VOE(E)/]_
(all small pertuberation is consideredagXx pi wt —ikz—ime) v2 r o

whereo is the freqqency, K thg angnudmal wave number angl (s case the analytical solution can be found only under
m the number of azimuthal variations).

TS ] special approximations, for example, small currents limit and
Here, the general wave equation in the electrostatic appropirge external magnetic field. Numerical solutions of steady
mation is presented and completes the general steady state esfagde equations show that under conditidbgre > 1 and
tions [1]. Let us suppose that the conservation law (1) is valid< 0.1 transverse distributions of the main interesting param-
and no additional assumption is used, i.e., we consider a ratbtars (of,, vz, Bz, wo, L, y) are _close to uniform exceph o< I.
wide class of equilibrium states of monoenergetic beams.  Note thatB, at the cathode differs frorB; in the drift region.
Performing routine procedures to linearize the complete $&%ing this approximate solution, one can write functiénss

of equations, the wave equations in our case may be written in Fi~w,; F2~ —(woBo/vzi);
the form Fon P Fam 0 Fs~ ol (9)
2
T S R wherew, = Byi + 2woyi, wo = —(Byi — Bo)/2y1. Index
ror Fs —ygL2) or signifies axis value. Wave equation (5) can be written as follows
m2 wZ a)z m 2 190 8(1) m2
o= +K)[(L2— 22 )+ B —vo +k I )
{(r2+ >< Yo +Vo fv9+ vz) * ror or ¢ r2+
oy (PF+kR)? L g aL 2 y?L2 w3
_p(r 1 ZFZ) _-g,%= w; Y (k2<1——p>+ (10)
Yo Fs—yEL? ror or a)lz)—ysz—i—w%y yL2

19 o3L(PF+kR) w2 2
i i N QY 5 it -
rar Fs— 2Lz } - O Y <mwo+kvz> >} .



Note that this equation where an approximate steady state solidifferent cross terms that can be omitted because of approxi-
tion of 1-st order was used, is valid at least for two other equiate solution of the steady state problem especially for resonant
libria, namely 1) monoenergetic beam wjth= const, 2) rigid cases.

rotor equilibrium withv, = const. That s, for such a'universal’

approximation all information about special characteristics of

the equilibrium was lost. It would be not surprising that in the REFERENCES
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Itis difficult to find the electromagnetic wave equation itron beams emitted from shielded and immersed cathodes”. -
general form due to the cumbersome expressions. But, itﬁ' |

possible to find rather simple equations for a solid beam wi
P, = 0, at least in the small current limit (of little practical
interest) and for a high-current hollow{ = const), thin-walled
beam, which might be useful because of practical interest.

For a thin-walled hollow beam but with large (relativistic)
variation ofv, in cross section under assumptiahsir > 1/R,
where R is the average radius of the beamiR ~ const, and
a)ﬁ/yo A const, thougm% and yp do strongly vary in cross
section [3]. In thev, = 0 system, the result may be written in
the form (heresy = y,1)
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W, + x*Wp, = 0;

602 /
(<L2 2 — —F’)W(;) + (11)
Yo
0)2 0)2
(12858 ) (5 e =0

wherex? = ? — k» — m?/R? — w3 /yp ~ const,L = L(vp),
and

2
m WY,
WGZ:(X2+k2)EZ+k<?_ P G)Eg;

yoL
W= —
T KL
CONCLUSION

A general wave equation in the electrostatic approximation,
which is valid in any selfconsistent equilibrium, was derived un-
derthe only assumption of constancy of full particle energy. This
equation supplements general steady state equation and allows to
consider different equilibria and their wave properties in closed
manner. Equations (5) and (11) allow to investigate and com-
pare properties of electrostatic and electromagnetic waves and
instabilities in REB for different equilibrium states correspond-
ing to experimental condition of beam generation in high-current
accelerators. These equations permit to compare the influence



