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ABSTRACT

It is of interest to determine how short a bunch can
be maintained in a storage ring. Some aspects of this problem
depend on specific details of the storage ring design.
Instability thresholds depend on the strength of the
wakefields.  In this paper we determine the longitudinal
wakefield due to curvature of the electron orbit, both in free
space and between parallel plates with infinite conductivity.
Our study leads to the conclusion that as long as the vertical
aperture of the vacuum chamber is not too small, the
wakefield due to image charges does not significantly vary
along a short bunch. Therefore, we suggest that in the
determination of the equilibrium bunch length of very short
bunches, the effect of the conducting plates can be neglected.
The starting point for bunch lengthening calculations should
be the free space wakefield.

I. INTRODUCTION

In his pioneering book, published in 1912, Schott [1]
calculated many of the properties of the radiation due to a
relativistic point charge moving with uniform speed on a
circular orbit. In particular, Schott determined the
electromagnetic field at all points on the circular orbit,
yielding what we now refer to as the wakefield of the point
charge. Here, it is our goal to extend Schott’s work in several
directions, considering a highly relativistic particle whose
velocity is close to the speed of light c. In this case the
longitudinal wakefield simplifies and is large in front of the
point charge and reduced by a factor of 1 4γ behind.

Working in the time domain, we obtain an analytic
expression for the longitudinal wake in front of the charge.
Next, we use the method of image charges to derive the
longitudinal wake due to a point charge moving on a circular
orbit lying between two parallel plates of infinite
conductivity.

II. WAKEFIELD IN FREE SPACE

The retarded Lienard-Wiechert potentials and fields
for a point particle are derivable from the time dependent
Green function [2],

( )G x t x t t t x x c x x( , ; , )
r r r r r r

′ ′ = ′ − + − ′ − ′δ . (1)

In Lorentz gauge, the scalar and vector potentials are,
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the instantaneous velocity.
Choosing 

r
r t0 ( )  to be the trajectory of an electron

moving with uniform velocity on a circle of radius ρ, Schott
determined the tangential electric field at the observation
point 
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Starting from Schott’s result we consider its simplification in
the limit as β → 1. The tangential electric field on the
circular orbit is written as the sum of the singular Coulomb

term and a non-singular term, 
~
Eφ  due to synchrotron

radiation:
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Here, γ is the electron energy measured in units of its rest
mass and 2ξ ρ= s /  is the angle between the electron and the

observation point. Directly in front of the electron ξ = 0  and

directly behind ξ π= . Introducing the scaled angle,

µ γ ξ≡ 3 3 , the non-singular term is given by,
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where U e0
2 44 3= π γ ρ  is the energy loss per turn for a

single electron. Since Ψ( )µ  vanishes at µ = 0 and µ = ∞, the

function dΨ(µ)/dµ has the additional property, dΨ( )µ
0

0
∞

∫ = ;

a plot of Ψ(µ) & dΨ(µ)/dµ is given in Figure 1. Useful
asymptotic expansions for small and large µ > 0 are [3-5],
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The wake function is discontinuous at the position of
the point charge. The choice, dΨ(0)/dµ = 1/2, represents an
average of the electric field immediately in front and behind
the charge, and results in the power loss being correctly given

by ec
~
Eφ (0). The total power radiated by an individual

electron is P I U ce= ⋅ =0 0
2 4 22 3γ ρ .

Figure 1: Free space potential function Ψ  and wakefield
function d dΨ / µ .

The wake potential due to synchrotron radiation that
is generated by a beam of electrons is then given as,
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For a Gaussian electron beam the curvature wake potential,
which is plotted in Figure 2, scales as [5],
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where D1/3(x) is a parabolic cylinder function.

Figure 2: Wake Potential for a Gaussian bunch.

III. WAKEFIELD FOR PARALLEL PLATES

Let us now consider an electron moving with
uniform speed on a circular orbit in the horizontal midplane,
between two parallel plates of infinite conductivity located at
z = ±h. Using the method of image charges we easily see that

the free space Green function of equation (1) should be
replaced by the parallel plate Green function,
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Here the observation point 
r
x and the source point 

r
′x  lie in

the midplane and $z  is a unit vector in the vertical direction
perpendicular to the plates.

Using the Green function of equation (9) together
with equation (2-3), we proceed in a manner analogous to
that of the free space calculation. Introducing the parameter
∆ ≡ h / ρ , the tangential electric field on the orbit is found to

be given by (∆ ∆<< >>1 12, γ ):
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where W d d( ) ( ) /µ µ µ≡ Ψ , and the scaling functions G1 and

G2 are plotted in Figure 3.
In free space the radiation travels along a chord to

another point on the circle, thereby always arriving before (in
front) of the exciting charge. With the plates in place the
radiation can bounce off the plates once or numerous times
and arrive behind the exciting charge resulting in a trailing
wakefield, which we have described using image charges. For
γ 2 1∆ >> , the G1 term is smaller than the G2 term and for

small ξ they are both small compared to the free space
wakefield, W( )3 3γ ξ . The main effect of G2 is to cancel the

tail of W( )3 3γ ξ  at large distances (times), which is the time

domain analog of the suppression of low frequencies in the
impedance due to the parallel plates. The G1 term cancels the
long distance tail of the Coulomb term. When γ 2 1∆ ≈ , the

G1 , G2  and W term become comparable in magnitude, and
the situation is more complicated.

Figure 3: Plot of scaling functions G1 and G2.



The expression for Eφ  in equation (10) is given in

the time domain. Results in the frequency domain were
obtained in references [6,7]. We believe that the time domain
results are more directly applicable to the study of the bunch
lengthening instability.

We have also calculated the tangential electric field
at the position of the charge itself for ∆ ∆<< >>1 12, γ , we

have found the radiated power loss P ecE= φ ( )0  to be given

by,
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In equation (11) we have averaged the singular free
space contribution to the electric field immediately in front
and behind the point charge. The second term, proportional
to K1, is in agreement with the G1 term in equation (10). The
third term cannot be obtained from equation (10) because
G2(0) = 0. It was necessary to go to higher order in ∆. The
correction due to the conducting plates is small in magnitude
and has the sign indicating that the electron radiates more
energy between the conducting plates than it would in free
space. This is the case despite the fact that the plates cut off
the lowest frequencies.

IV. LONGITUDINAL COUPLING IMPEDANCE

The longitudinal coupling impedance due to
synchrotron radiation is related to the Fourier transform of

the non-singular function wake, Z E In n n≡ ⋅2πρ ~
/ , where
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φ  and for a single circulating charge,

I ecn = β πρ/ 2 . In free space the impedance associated with

this wake is computed to be in MKS units [8],
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where the Weber function, En(z), is defined as
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The real part of the impedance is proportional to the
synchrotron radiation power emitted at a frequency nω0 and
integrated over all vertical angles for a single electron,
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For 1<<n<<γ3, only the first two terms in the
expression for the impedance are significant which implies
the far field radiation term is dominant. Using the
expressions for Jn and En when the order and argument are
nearly equal one can recover the well known result of Faltens
& Laslett [9],
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except the sign of the reactive part is opposite to that given by
them since the wake is in front of the exciting charge and not
behind.

For n >> γ3, the first four terms in the expression for
the impedance are now significant which implies that at very
high frequencies, characteristic of very short distances, the
near field also contributes to the impedance.
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