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ABSTRACT For a point particle following a trajectory(t) the

charge and currertensities arep(X',t) = e3(X -T,(1) and
It is of interest to determineow short abunch can - _ = _ = _ .= _ .
be maintained in a storagieg. Some aspects diis problem 1 X"1) = eVod(X ~To(D), where Vo =B, (1) = dF, / dt is
depend on specific details dhe storageing design. the instantaneous velocity.
Instability thresholds depend on the strength of the Choosing T, (t) to be thetrajectory of an electron

wakefields. Inthis paper we determine the longitudinahoving with uniformvelocity on acircle of radiusp, Schott

wakefield due to curvature dfie electron orbit, both ifiee  determined the tangential electric field at tbieservation
spaceand betweenparallel plates with infiniteeonductivity. point % using

Our study leads tehe conclusiorthat as long as theertical _ 19 19 -

aperture of the vacuum chamber is rob small, the Eq,(x,t)=——a—d>(x,t)—EaAq,(x,t). 3)
wakefield due to image chargésesnot significantlyvary . P oP i L
along a short bunch. Therefore, we suggétt in the Startllng_ from Schott’s result we co_nS|der |ts.smjpl|f|cat|on in
determination of the equilibrium bunch lengthvefry short the limit asp - 1. The tangential electric field on the
bunches, theffect ofthe conducting plates can be neglecte@ircular orbit is written as the sum of the singutzoulomb
The starting poinfor bunchlengthening calculations shouldterm and a non-singular termi, due to synchrotron
be the free space wakefield. radiation:

co ~
e sE+

. INTRODUCTION Bo = apty? sine o )

In his pioneering book, published in 1912, Schott [i-|ere,y is the eIec'Frorenergy measured ianits of its rest
calculated many of the properties of the radiation due t ssand Z =s/p is the angldetweerthe electrorand the
relativistic point charge moving with uniform speed on @bservation point. Directly in front ¢he electrong =0 and
circular orbit. In particular, Schott determined thdirectly behind & =m. Introducing the scaled angle,
electromagnetic field aill points on the circulaorbit, — 3 . N
yielding what wenow refer to ashe wakefield ofthe point W =3y7E, the non-singular term is given by,
charge. Here, it is our goal to extend Schotitsk in several E¢(H) = _&M =
directions, considering a highly relativistic partiokhose 2rpe  du

©)

velocity is close tothe speed oflight c. In this case the 0 0, pu<oO
longitudinalwakefield simplifiesand is large irfront of the O 1
point charge andreduced by a factor ofl/y* behind. O > H=0
Working in the time domain, we obtain an analyti(:.”';e\/45 m o o

- o - 2 U coshy sinh™ D—cosr{smh1 ]Ep>0
expression fothe longitudinalake in front ofthe charge.  3p° gy % “E MO
Next, we usethe method of image charges to derive the O =B . ] O
longitudinalwake due to oint charge moving on a circular oW & smr~[23|nh H] J
orbit lying between two parallel plates of infinite B B B

conductivity.
where U, =4me’y*/% is the energy lossper turnfor a
Il. WAKEFIELD IN FREE SPACE single electron. Sinc&(u) vanishes aft = 0 andy = o, the

The retarded Lienard-Wiechert potentialsd fields function d¥(u)/du has the additionaproperty,j &/(n)=0;
for a point particleare derivable from the time dependent 0

Green function [2], a plot of W(u) & d¥W(u)/du is given in Figure 1.Useful
G(x,t;X',t") = 6(t' - t+|7(-y('|/c)/|$<-3('| ) (1) asymptotic expansions for small and lapge O are [3-5],
In Lorentz gauge, the scalar and vector potentials are, dW(u) E 1—1% 2+, u<<1
O(X',t) = [d°x'dtp(X, HG(% X, 1), (2a) d—u=W(u) =0 3“3 13+....u>>1' (6)
H az®

A(X'1) =Idsx'dt'](i',t)e(i,t;i',t'). (2b)



The wake function is discontinuous at the position tfie free space Green function of equation (1) should be
the point charge. The choice#(D)/du = 1/2, represents anreplaced by the parallel plate Green function,

average of the electric field immediately in frartd behind 0 |x 2nh4D
the charge, and results in the power loss being correctly given ) (—1)"5? _Hf
by ecE »(0). The total power radiated by an individual Gep(X X', t") = Z |>?—>?'—2nhﬂ (9)

electron isP = I, [U —2ce2y4/3) . o o
Herethe observation pointx and thesource pointx' lie in

1.0 - o | the midplane and is a unitvector inthe vertical direction
0.8 } - T — — {1  perpendicular to the plates.
= / T - Using the Green function of equation (9) together
~ 06 1  with equation (2-3), we proceed inmaanner aalogous to
\; '/ - \P(,u,) ] that of thefree space calculation. Introducitige parameter
T 047 — d¥(w)/du 1 A=h/p, the tangential electric field on the orbit is found to
= 02 I 1 begiven by p <<1,y*A >>1):
> l 1
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Figure 1: Free space potential functighand wakefield
function d¥ / du . where W(u) =dW(u)/ du, and the scalinfunctions G and
Thewake potential due to synchrotreadiation that G are plotted in Figure 3.
is generated by a beam of electrons is then given as, In free spacehe radiation travels along a chord to
- o _ another point on the circléhereby always arriving before (in
V(s) = [Ey(s- $)U(S) ds (7) front) of the exciting charge. With the plates in place the
) - ~ radiation canbounceoff the platesonce or numerous times
For a Gaussian electron beahe curvaturevake potential, ang arrive behind the exciting charge resulting in a trailing
which is plotted in Figure 2, scales as [3], wakefield, which we have described using image charges. For
V(s) D 1 expD- s° 53 (—s /0)’ ®) y’A>>1, the G term is smallethan the G term and for
small § they are both small compared to tfree space
where Dys(x) is a parabollc cyImder function. wakefield, W@y *¢ ). The maineffect of G is to cancel the
ﬂ% 1.2 - . - . - . : tail of W(3y°’¢) at large distances (times), which is the time
> ] domain analog of the suppressionl@fv frequencies in the
E\ .
S 08} Back Front ] |mped§nce due 'Fo the parallel plates. Trl]ee@nzcancels the
= long distance tail of th€oulombterm. Wheny“A =1, the
.i G;:, G and W termbecomecomparable in magnitude, and
- 0.4 r 1  the situation is more complicated.
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Figure 2: Wake Potential for a Gaussian bunch. = 0 |
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lll. WAKEFIELD FOR PARALLEL PLATES al i
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Let us now consider an electron moving with 5 3 1 1 3 5
uniform speed on aircular orbit in the horizontal midplane, h h h
between twarallel plates of infiniteonductivity located at ¢
z =+h. Using the method of image chargeseasily se¢hat Figure 3: Plot of scaling functions,@nd G.



The expressiofior E, in equation (10) is given in

the time domain.Results inthe frequency domain were
obtained in references [6,7]. VBelievethat the time domain
results are mordirectly applicable to thetudy ofthe bunch
lengthening instability.

We have also calculated the tangential eledieid
at the position of the charge itsétfr A <<1,y’A>>1, we

have found the radiatggbwer loss P= ecH0) to be given
by,
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whereK, OY ~—~— andK, 0§ ——=In2.
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In equation (11) we have averaged the singinke
space contribution téthe electric field immediately in front
and behind the point charge. Themsdterm, proportional
to Ky, is in agreement with the;Germ in equation (10). The
third term cannot bebtained from equation (1®ecause
G,(0) = 0. It was necessary to gohimher order inA. The
correction due to the conducting plates is small in magnitu
and has the sign indicating that tekectron radiates more
energy betweethe conducting platethan it would in free
spaceThis is thecase despitthe fact that theplates cut off
the lowest frequencies.

IV. LONGITUDINAL COUPLING IMPEDANCE

The longitudinal coupling impedance due
synchrotron radiation is related to the Fourier transform

the non-singular functiorwake, Z, 52TrpD~En/ l,, where

EFI

2n
Zij'de e ™ E,(6) andfor a single circulating charge,
n 0

I, =ecB/2mp. In free spac¢the impedancassociated with
this wake is computed to be in MKS units [8],

0 O
32, (2r8) - B, (21B)] .
B n ® : 5
Z, = Z,mBnG 5 [ @NY - B, (23] o (12)
0 B Y o 0
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where the Weber function, Kz), is defined as

E.(9= %J’sin(nt— zsint)dt.
0

The real part of thampedance is proportional to the
synchrotron radiatiopower emitted at a frequencyanand
integrated over all vertical angles for a single electron,

to

2
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0
For 1<<n<</, only the firsttwo terms in the
expression fothe impedance are significant which implies
the far field radiation term is dominant. Using the
expressions for,Jand E when the ordeand argument are
nearly equal one carecoverthe well known result of Faltens
& Laslett [9],

ReZ, = Z,mBd;, (2n) -
§ B

r 0
Zn =Zo (1//;_7,) D\/_E?’HEDDhM, (14)
3 02 20

except the sign of the reactive part is opposithabgiven by
them since thevake is in front othe exciting charge and not
behind.

For n >>V, the firstfour terms inthe expression for
the impedance amow significant which implieghat atvery
high frequencies, characteristic wéry short distances, the
near field also contributes to the impedance.
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