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1. INTRODUCTION.

Ion-driven effects in electron beams impose severe
limitations on performance of storage rings [1]. These effects
are much similar to the well-studied effects of the beam space
charge. Most effects caused by the entire charge of the beam
can be calculated by commonly used codes, e.g., BeamParam
and ZAP [2]. We make an attempt to survey briefly in this
report the scaling coefficients of the ion-driven effects related
to those of the beam charge. The ion core confined by the
electron beam is described by the neutralization factor η
equal to the relative ion core charge:
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Here Nq is the number of ions within the beam per its unit
length; Nb is the number of electrons per beam's unit length
(Nb=j/ce, j is the beam current); Z is the charge of the ion
nucleus.

Besides we use the relative density of the ion core ζ:
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We suppose that the transverse density distributions in
both the beam and the core are the same and the ion core is
coasting (the core density is homogeneously distributed along
the beam orbit). The electron beam is considered consisting of
bunches that occupy 1/B part of the orbit length (B is the
bunching factor). So, the main ion-driven effects with their
scaling to similar effects of the beam are discussed below.

2. TUNE SHIFTS

2.1. Incoherent betatron tune shifts

The incoherent shift of the betatron tune Qu caused by the
core is positive:

(Qu-Qu0)ion=-(Qu-Qu0)beam η  γ 2/B, (1)

where u=(x,z).
While the tune shift induced by the beam space charge is

negligible, the shift caused by ions is significant (η γ 2/b>>1).
It is worthy of note that this shift is essentially nonlinear. For
the elliptical beam cross section with the normal density
distribution the shift is:
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Thus for the round gaussian beam it is:
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Here Ju is the square of the betatron amplitude.
Betatron amplitude vs. its tune is plotted in Fig. 1.
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Fig. 1. Q shift vs. amplitude (square root of J  over σ ).

As it can be seen from Fig.1, the ion tune shift is
sufficiently nonlinear at large aplitudes of oscillations.
Therefore the periferal beam particles will experince nonlinear
oscillations. The maximum in the tune shift at the beam axis
(J=0 in (2)) is equal to the maximum value of the tune spread.
Major part of the tune spread in electron beams causing the
Landau damping is due to trapped ions.

2.2. Tune shifts due to the beam environment

These shifts are much smaller than the beam's and
negligibly smaller than those described in 2.1. So, the
incoherent tune shift due to reflection in the conducting
vacuum chamber walls is smaller than that due to the beam
charge by a factor of -η /B. Reflection of the ion current in
ferromagnetics does not take place because of a zero average
longitudinal velocity of ions.



2.3. Coherent tune shifts

The ion core is at rest when the beam experiences small
coherent betatron oscillations. Hence the coherent betatron
shifts are equal to the incoherent ones (2) and are dominant.

3. INCREASE IN BEAM LOSSES AND
EMITTANCE

Trapped ions contribute the additional density to the
residual gas. The results in the increase of gas pressure in the
beam. The influence of the ions is proportional to their density
ni.

ni ε x , ε z( ) = ζ nb = 4 jζ
π Rce
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where ε u is the beam emittance.
The transverse emittances can be derived from the set of

algebraic equations:

ε x = εrad + V n0 + ni( ) / Qx

ε z = V n0 + ni( ) / Qz + κ ε x
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where κ  is the coupling factor; Ip are the radiation integrals of
the ring.

As it can be seen from (4a)-(4b) the radiation part of the
horizontal emittance increases with energy as γ 2 while the
'gas' part decreases as γ -5. Therefore, at high energies the
beam emittance is not  increased by the ions and the residual
gas as well. The trapped ions cause increase in the gas density
(3) and the ensuing losses of the  beam particles.

4. ION-DRIVEN TRANSVERSE
RESONANCES

The forces due to the space charge of the ion core can not
only shift the working point (Qx,Qz) of the ring towards
resonant stop-bands but also drive the specific resonances.
These resonances are similar to the crossing beam resonances
being studied intensively . The resonances due to the ion core
forces are not so complicated for investigation because of the
coasting nature of the core. As it has been shown in [3], the
ion core drives the nonlinear difference resonances

2|mQx-nQz|<<1, (5)

These resonances capture the peripheral beam particles.
The  'transverse energy' of these particles is the constant of
motion:

E⊥ ≡ JxQx
2 + JzQz

2 = const (6)

It leads to the occurence of halo around the beam and can
cause the 'resonant' increase in the beam losses when the halo
tails reach the aperture of the ring. These resonances may be
harmful for the machine with the low-energy multiple
injection, where the injected beam with a large amplitude
experiences the nonlinear forces due to the ions confined by
the circulating beam. Especially it concerns the rings with
Qz<Qx. Increase in a value of the relation

σ x

σ z
⋅ Qx

Qx

will lead to enlarging of halo. A sketch of the beam cross
section experiencing the difference resonance is presented in
Fig.2.

     

      

Fig. 2. Solid line represents the beam envelope, dotted line --
the halo envelope.

6. ELECTRON-ION INSTABILITY

This instability of the relative oscillations of the beam and
the core is similar to the proton-electron or the antiproton-ion
ones. The main difference between them consists in the
bunching of the electron beams. This instability is the only



known ion driven effect dependent upon the longitudinal
bunch shape. The instability of the space modes has the lowest
threshold [4]. The hydrodynamic theory for the round
homogeneous bunch shows that the threshold is determined by
the maximum in the bunch density:

max(nbunch ) =
γ p2 − Q2( )

4π r0R2 (7)

p=1,2,...;   p>Q

The increment has its largest value in the vicinity of the
threshold and is proportional to the square root of the ion
density:
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Here ′nbunch ≡ d nbunch d ϑ , r p is the classical proton

radius; A is the ion mass number.
This phenomenon is poorly known. Experimental

observations show pulsation in the beam dimensions and none
additional beam losses [4].

5. CONCLUSION

The most harmful ion-driven effects among listed above
are the nonlinear tune shifts and resonances especially for the
rings with the multiple low energy injection. The tune spread
caused by ions increases the Landau damping which stabilizes
the coherent transverse instabilities. It is essential to choose
properly the working point and strength of the multipole
lenses such as the octupoles. Some ion-driven effects need to
be studied more extensively.
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