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Operating Conditions of High-Power Relativistic Klystron

Han S.  Uhm, Naval Surface Warfare Center, Silver Spring, MD 20903-5640

An electron beam pre-modulated at the first cavity in a
klystron enters the second cavity opening, exciting it.  Induced
voltage at the second cavity in a high-power klystron forms a
virtual cathode momentarily, sending back a part of the beam
toward the first cavity.  The relationship between the induced
voltage and the return current at the first cavity is investigated.
The boundary between the amplifier and oscillator operation
regions is described in the parameter space defined by the return
current strength and inter-cavity distance.

I. INTRODUCTION

There is a growing body of literature on theoretical and
experimental studies of relativistic klystron amplifiers driven by
modulated intense relativistic electron beams.  The relativistic
klystron amplifier (RKA) exploits the strong self-electric field,
which effectively modulates the beam current, thereby enhancing
electron bunching and amplifier efficiency.  The frequency and
efficiency of the current modulation in a RKA are monochromatic
and almost 100 percent in appropriate system parameters.  One of
the main issues in present RKA development is the enhancement
of power and frequency simultaneously.  The size and opening of
the cavities in RKA should be reduced, to increase the excitation
frequency.  Therefore, a high-power high-frequency klystron
amplifier has inherent problems due to reduced cavity size,
including electron emission and ac beam loading at cavity gap
opening.  However, if the induced voltage at the second cavity is
high enough, it forms a virtual cathode and reflects part of the
electron beam back to the first cavity.  The return beam from the
second cavity enters the first cavity opening and excites it further
if the return current modulation is in phase with first cavity
excitation.  The in-phase return-current modulation may reduce the
ac beam loading at the first cavity, significantly improving the
klystron performance.  As a proof-of-principle experiment, Serlin
and Friedman  built the two-beam klystron, where two annular1

electron beams propagate through a grounded tube.  These beams
are pre-modulated at the first cavity by input microwaves.
Because the inner beam energy is considerably less than the outer
beam energy, part of the inner beam is reflected by the virtual
cathode formed at the second cavity and further excites the first
cavity.  Significant improvement of the current modulation has
been reported from this experiment.   A theory describing the1

relationship between the induced voltage and the modulated return
current at the first cavity opening is developed.  Boundaries
defining the amplifier and oscillator operation regions are also
described in terms of the normalized return-current strength h and
the inter-cavity distance represented by the phase angle ". 
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II. TWO BEAM KLYSTRON

High-level stable excitation of the first cavity is very
important for current modulation in a high-performance klystron.
The first cavity is excited first by external input microwaves,
which have enough pulse length, saturating the induced voltage to
the steady-state value N .  Sometime during this microwave pulse,w

the electron beam is allowed to enter the klystron.  The
relationship between the induced voltage and the ac return current
in the first cavity opening can be found from an equivalent circuit
representation of the cavity impedance L , C  and R .  The1 1 1

inductance L  and capacitance C  are related to the resonance1 1

frequency T  of the cavity by T  = (L C )  and the cavity Q-value1 1 1 1
-1/2

is related to the resistance R  of the equivalent circuit by Q  =1 1

TR C  (Ref.2).  The resonance frequency T  of the first cavity is1 1 1

assumed to be in resonance with the input microwave frequency T,
i.e., T  = T.  The intensity of the return current is unknown.1

However, the level of the return current modulation increases as
amplitude N  of the induced gap voltage at the second cavity2

increases.  Note that the amplitude N  is proportional to the2

amplitude N of the induced voltage at the first cavity.   In this3

regard, we assume that the return current modulation is
proportional to the amplitude N of the induced voltage at the first
cavity.  

Collecting all terms together, the induced gap voltage
V (t) at the first cavity can be calculated from1

2

where f  represents the intensity of the return current and others

coupling mechanisms, the variable x is the normalized time
defined by x = Tt, and the phase angle " is related to the inter-
cavity distance L by

In Eq. (2), $ c and $ c represent velocities of the forward and1 2

backward beams, Q  is the phase shift of the induced voltage at the2

second cavity relative to the forward current modulation, and Q3

is the phase shift of the return current due to reflection at the
virtual cathode.  In Eq. (2), the term proportional to N  representsw

the contribution from the input microwaves and the term
proportional to f  originates from the incoming return current.  Ins

obtaining Eq. (2), we have assumed that the induced gap voltage
V (t) is expressed as1
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where N(x) and Q(x) are amplitude and phase shift, respectively, shift.  It is important to find in what parameter regime the steady-
of the induced voltage at the first cavity.  They are slowly varying state value P is larger than unity.  The modulated return current
functions of time x.  We assume that the input microwaves and amplifies the induced voltage only in this parameter regime.
modulated return current drive the excitation of the first cavity, Otherwise, the return current dampens the induced voltage.  To
which accommodates the driving signals by changing its amplitude find boundary of the amplifying region, we substitute P = 1 into
and phase.  Thus, selecting the time frame in which the phase is a Eq. (7) and obtain
non-zero value of Q(x) as shown in Eq. (3) is quite appropriate in
the subsequent theoretical analysis.  

Substituting Eq. (3) into Eq. (1), and defining the
normalized amplitude Y and normalized time y by

we find the equations which govern the phase Q and amplitude Y. expressed as h = 2sin" for 0 < " < B.  Note that the value of the
They are parameter h in Eq. (8) at " = B/4 or at " = 3B/4 is 2 .  The curves

and 

where the normalized return-current strength h is defined by h = induced voltage V (t), we solve the coupled differential equations
fQ .  Although the parameter f  is a small number, the normalized (5) and (6) numerically.  As expected, we find from the numericals 1 s

return-current strength h can easily be on the order of unity calculation that the amplitude Y and phase shift Q approach their
because of a large cavity-Q value.  Before solving Eqs. (5) and (6), steady-state values as time goes by.  The closer the steady-state
we assume the initial condition that at time y = 0, the electron amplitude to unity, the quicker the transient behavior dies out.  In
beams enter the system, thereby turning on the terms proportional the limit of the angle " = B/2, we note dQ/dy = 0 from Eq. (5), and
to h in Eqs. (5) and (6).  Otherwise, the cavity is saturated by the Eq. (6) is simplified to
microwave input at y < 0 and the initial conditions for the phase
and amplitude are given by  cos[Q(0)] = 0 and Y(0) = sin[Q(0)]
at y = 0.  These conditions are equivalently expressed as Q = B/2
and Y = 1 at y = 0.  After a careful examination of Eqs. (5) and (6),
we note the functional properties of Y(B-") = Y(") and Q(B-") = Solution to Eq. (10) is given by
B - Q(").  Therefore, the amplitude Y and phase shift Q for " = B-
"  can be expressed by those for " = " .1 1

The homogeneous solution Y  to Eq. (6) increasesh

exponentially, provided hsin" > 1, which is called the self-
excitation.  On the other hand, when the phase angle " satisfies which eventually saturates to Y = P = 1/(1-h).  The maximum
hsin" < 1, the solution Y to Eq. (6) is bounded and the klystron is amplification of 1/(1-h) occurs at " = B/2, which is called the in-
the amplifier operation region.  The boundary between the phase condition.  The steady-state amplitude at " = B/2 increases
amplifier and oscillator regions in the (",h) parameter space can to infinity as the strength h approaches unity.  This observation
be illustrated and the border line is obtained from hsin" = 1.  may mislead the outcome of practical present experiments.  When

Amplifier Operation:  In the amplifier operation region h 6 1, Eq. (11) is further simplified to Y = 1 + y, which increases
characterized by hsin" < 1, the solution Y to Eq. (6) is bounded, linearly in time.  Therefore, amplification for " = B/2 and h = 1 is
and the steady-state values of the amplitude Y and phase Q limited by the electron beam pulse.  In the out-of-phase case
induced at the first cavity opening are determined by dQ/dy = characterized by " = -B/2, the solution to Eq. (6) is given by
dY/dy = 0 at the time y = 4.  Thus, after a straightforward
calculation, we obtain

for amplifier operation from Eqs. (5) and (6).  In Eq. (7), P = induced gap voltage at the first cavity is a linear equation, which
N /N  and Q  are steady-state values of the amplitude and phase is an excellent representation for an amplifier operation.  However,1 w 1

We remind the reader that the phase shift Q  satisfies sinQ  > 0 for1 1

P > 0.  After a straightforward algebraic manipulation, Eq. (8) is

1/2

obtained from h = 2sin" represent the boundary of the amplifying
region in the (",h) parameter space.  For a specified value of the
normalized return-current strength h, the amplifying region is
defined by

where h is less than 2 .  To investigate transient behavior of the1/2

1

where the return current dampens significantly the gap voltage
induced by the microwaves.  
 Oscillator Operation:  It is pointed out that Eq. (1) for the
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mentioned earlier, the amplitude Y in Eq. (6) increases in terms of the phase angle " and the cavity Q-value.  The in-
exponentially in the oscillator operation region satisfying hsin" > phase condition of " = (0.5 - 2n)B, at which the modulated return
1.  In reality, the term proportional to the parameter f  in Eq. (1), current is in phase with the first cavity excitation, can be expresseds

which represents the modulated return current, may stop to grow in terms of the inter-cavity distance L, once the phase shifts Q  and
as the amplitude N approaches saturation.  For example, theQ  are known.  Here, n is an integer.  When segments of the
location at which the maximum current modulation of the forward forward beam arrive on the second cavity, a certain limited portion
beam occurs, starts to shift toward the first cavity from the second of the beam will be reflected at the cavity.  The phase of the return
cavity location, if the amplitude N increases significantly. current may be very close to the phase of the induced voltage at the3

Remember that the second cavity location was initially selected for second cavity.  We thus approximate Q  = B/2.  According to a
a maximum forward current modulation of moderate amplitude N. previous study,  the optimum current modulation occurs at the
Once the maximum modulation location starts to shift, the term phase shift satisfying 0 < Q  < B/2.  We assume Q  = B/4, which
proportional to f  in Eq. (1) does not increase linearly with N; is the value corresponding to the middle in the allowable range ofs

instead, it may start to saturate.  We also observe that the the phase Q .  The error associated with this assumption is one-
modulated return current originates from reflection at the second sixteenth of the wavelength or less in the klystron.  Substituting
cavity.  As long as the return current is much less than the forward these phase shifts into Eq. (2), the in-phase condition is simplified
beam current, it may be proportional to the excitation level of the to
second cavity, which is also proportional to the first cavity
excitation.  This assures linearity in Eq. (1).  If the return current
is a substantial fraction of the forward current, due to lack of a
sufficient amount of the forward current, it may start to saturate as
the cavity excitation increases.  There may be other saturation The second cavity should be located where the forward current has
mechanisms for the modulated return current as the amplitude N a maximum modulation.  The second cavity location is therefore
of the induced voltage grows.  In this regard, Eqs. (5) and (6) for determined in terms of the beam parameters and geometrical factor
the oscillator operation are modified to G.  Maximum modulation location is given by

where the nonlinear saturation coefficient , is much less than unity parameters of the two-beam klystron experiment  at the Naval
in a typical klystron.  Equation (13) is a typical van der Pol Research Laboratory.  The theoretical result from Eqs. (16) and
equation for a forced oscillator.  Obviously, the terms proportional (17) predicts the optimum inter-cavity distance L = 14 cm, which
to ,Y  in Eq. (13) provide a saturation of the amplitude.  The is close enough to the experimental observation of L = 14.1 cm.2

normalized saturation amplitude Y  is obtained from Eq. (13) and We also observe from this numerical example that a deviation ofs

is given by about 13 percent ()L = 2 cm) from 14 cm results in a significant

which is typically much larger than unity, i.e., Y  >> 1. Ass

expected from Eq. (11), the maximum amplitude of the induced
voltage appearing on the first cavity occurs at the in-phase angle
" = B/2 for either the amplifier or the oscillator operation. 

From a numerical calculation of Eq. (13), we find that the
amplitude Y for an oscillator grows exponentially at the beginning
and then executes a small oscillation about the saturation value Y .s

Meanwhile, the phase shift Q increases almost linearly in time.
For a large-amplitude operation typical of the klystron oscillator,
the phase shift equation is approximated by dQ/dy = cot" from Eq.
(13) and the frequency shift at the saturation is expressed as

The frequency shift *T of the oscillator in Eq. (15) is determined

2

3

3
2

2 2

2

3

where (  = (1-$ )  and < is Budker's parameter of the forward1 1
2 2 -1

beam.  As a numerical example, we consider the physical
1

reduction of the current modulation, which also agrees with the
experimental observation.
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