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Abstract

This paper describes the results of local beam position
feedback experiments conducted on the ESRF storage ring
using digital signal processing (DSP) under the trilateral
agreement of collaboration among ESRF, APS, and SPring-8.
Two rf beam position monitors (BPMs) in the upstream and
downstream of the insertion device (ID) and two x-ray BPMs
in the sixth cell were used to monitor the electron beam and
the x-ray beam emitted from the ID, respectively.  The local
bump coefficients were obtained using the technique of
singular value decomposition (SVD) on the global response
matrix for the bump magnets and all the available BPMs
outside the local bump.  The local response matrix was then
obtained between the two three-magnet bumps and the
position monitors.  The data sampling frequency was 4 kHz
and a proportional, integral, and derivative (PID) controller
was used.  The result indicates the closed-loop feedback
bandwidth close to 100 Hz and clear attenuation (≈ -40 dB) of
the 7-Hz beam motion due to girder vibration resonance.
Comparison of the results using the rf BPMs and x-ray BPMs
will be also discussed.

I. INTRODUCTION

One of the primary requirements from today's synchrotron
light source users is the stringent transverse stability of the x-
ray beam emitted from the bending magnets (BMs) and
insertion devices (IDs).  Correction bandwidth exceeding 100
Hz and long-term drift of less than 10% of the transverse beam
size will be routinely expected from the third-generation syn-
chrotron light sources which are character ized by low
emittance of the charged particle beam and high brightness of
the photon beam.

Sources of beam motion include ground vibration,
mechanical vibration of the accelerator subcomponents,
thermal effects, and so forth.  In order to counteract the effect
of these sources, feedback systems that comprise the beam
position monitors (BPMs), corrector magnets, and processing
units are typically used [1-4].  The beam position feedback
systems can largely be divided into global and local feedback
systems according to the extent of correction, and DC and AC

feedback systems according to the bandwidth of correction.
In this paper, we will present the results of local AC beam

position feedback experiments conducted on the storage ring
of the European Synchrotron Radiation Facility (ESRF).  The
beam position monitor systems consist of two rf BPMs in the
straight section for an insertion device (ID) and two x-ray
BPMs monitoring the transverse positions of the x-ray beam
emanating from the ID.  The feedback control is based on
digital signal processing (DSP) with the proportional, integral,
and derivative (PID) control algorithm.  The local bump
coefficients are obtained using the technique of singular value
decomposition (SVD) of the response matrix for the local
correctors and the BPMs outside the bump.

The rest of this paper will consist of a theoretical review of
the local beam position feedback with DSP in Section II,
description of the experimental setup in Section III, and
presentation of the results in Section IV.

II. THEORY

Figure 1 shows the schematic of the local beam position
feedback using four corrector magnets for control of both the
displacement and angle of the x-ray beam.  With two degrees
of freedom, this can be done by controlling the positions of the
charged particle beam at two locations inside the local bump
or of the x-ray beam at two locations in the downstream of the
x-ray beamline.  The transform between the beam position
pair and beam displacement and angle is straightforward.  In
this work, we do feedback on beam position pairs in the
horizontal and vertical planes.
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Fig. 1: Schematic of the local beam position feedback using
four corrector magnets.



A. Derivation of the Local Bump Coefficients

A four-magnet local bump consists of two independent
three-magnet bumps a  and b  as shown in Fig. 1.  The
correctors in the bumps must be powered with certain ratios
dictated by the lattice functions in order to ensure the locality
of the bump.  Let θ1, θ2, θ3, and θ4 be the kick strength on the
four correctors, then we have
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where θa and θb represent the strength of the a and b bumps,
respectively.  The beam positions (x1 , x2) are then related to
the bump strengths (θa , θb ) through the 2×2 local response
matrix Rl  as
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The K  matrix in Eq. (1) must satisfy the relation
R K 0gl ⋅ = , where Rgl is the response of the global orbit
outside the local bump to the bump magnets.  The elements
are called the local bump coefficients.  These coefficients can
be expressed in terms of the lattice functions β and ψ of the
correctors [5].  Realistically, other factors such as power
supply and magnet efficiencies need to be taken into account
as well.  To simplify the process, an empirical method was
employed to determine the coefficients as explained below.

Let us consider the M×3 response matrix R for the
correctors in a three-magnet bump and the M BPMs outside
the bump.  The elements are derived from the expression

R k kij i cj
i cj

i cj= − −( )β β
πν

πν ψ ψ
2sin( )

cos , (3)

where ν  is the tune and ki  and kcj are the coefficients of
sensitivity for the BPMs and correctors, respectively.  Using
the technique of singular value decomposition (SVD) [6,7], R
is written as

R U W V= ⋅ ⋅ T , (4)

where U is an M×M unitary matrix, W is an M×3 matrix with
off-diagonal elements equal to zero, and V is a 3×3 unitary
matrix.  Using Eq. (3), it can be shown that the determinant of
the matrix product RT·R is identical to zero.  Therefore, at
least one singular value in W  should vanish and the
corresponding column vector in the matrix V contains the
local bump coefficients.  The same procedure is repeated for
the other local bump and the K matrix in Eq. (1) is obtained.

The above procedure was tried in the case of the Advanced
Photon Source (APS) storage ring with 360 BPMs.  The
largest response matrix element is approximately 10

mm/mrad.  A random error within ±0.1 mm/mrad was
introduced, and the local bump coefficients were obtained
with different numbers of BPMs between 3 and 358,
excluding the two BPMs inside the ID local bump.  Figure 2
shows the error in the local bump coefficients and the local
bump closure expressed as global orbit distortion in mm per
mrad of bump strength (θa  or θb).
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Fig. 2: Application of the SVD-based empirical procedure to
the APS storage ring to obtain the local bump coefficients.

B. Digital Signal Processing (DSP)

Schematic of the feedback signal processing for local beam
position feedback is shown in Fig. 3.  The set points or the
references are (s1, s2) and the beam positions obtained from
the two BPMs are (x1, x2).  The difference signals (s1-x1, s2-x2)
are passed through the low-pass filters (LPF) and the PID
controllers.  The DSP computes the corrector strengths θj  (1 ≤
j ≤ 4) by multiplying the matrix product K·Rl

-1  by the output
of the PID controllers.  Since K inv ·K = 1, the machine
response represented by the matrix product Rl ·Kinv  is such that
the resulting beam position is equal to the output of the PID
controllers.  This renders the local beam position feedback
into two independent feedback channels for the BPMs.
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Fig. 3: Schematic of feedback signal processing.

III. EXPERIMENTAL SETUP

The rf BPMs have button-type pickups, which are
connected to filter-comparators (FCs) in the tunnel through
short cables.  The outputs of the FCs, ∆ x, ∆y, and ∑, are sent to
the monopulse receivers in the signal conditioning and
digitizing unit (SCDU) housed in the VXI crate.  The data is
sent to the DSP in the VME crate through the MXI bus.  DSP
code development, control of operation, and data acquisition is
done using a workstation and a PC connected through
ethernet.  The x-ray BPM analog data is proportional to the



beam position with sensitivity of 10V/mm.  This data is
digitized by an ADC/DAC board with 12-bit resolution.

The sampling frequency, or number of feedback loops
executed per second, was set to 4 kHz.  Different low-pass
filter (LPF) bandwidth PID controller gains were tried to find
the optimal point of operation.

IV. RESULTS
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Fig. 4: Beam motion detected by the rf BPMs with feedback
on and off in (a) the horizontal plane and (b) the vertical plane.
The sampling frequency was 4 kHz, LPF bandwidth was 20
Hz, and the PID gains were: Kp = 30, Ki = 0.3, Kd = 0.
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Fig. 5: Impulse response of the feedback system.  The rise
time is about 600 µs.  The sampling frequency was 4 kHz,
LPF bandwidth was 20 Hz, and the PID gains were: Kp = 20,
Ki = 0.3, Kd = 0.

Figure 4 shows attenuation of the beam motion in the (a)
horizontal and (b) vertical planes.  The dominant 7-Hz motion
is believed to be due to the ground vibration combined with
girder resonance.  This beam motion has been successfully
arrested by the feedback control.  The impulse response of the
feedback system shown in Fig. 5 shows a rise time of
approximately 500 µs.  We used 4-kHz sampling frequency;
20-Hz LPF bandwidth; and the PID gains Kp  = 20, Ki = 0.3,
and Kd = 0.  The frequency response of the feedback system in
the frequency range 0.1 - 1000 Hz is shown in Fig. 6.  The
bumps near 10 Hz are due to the measurement fluctuation.
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Fig. 6: The frequency response of the feedback system.  The
feedback parameters are the same as in Fig. 5.  The bumps
near 10 Hz are due to measurement fluctuations.
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