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Abstract

Recirculating, energy–recovering linacs can be used as driver ac-
celerators for high power FELs. Instabilities which arise from
fluctuations of the cavity fields are investigated. Energy changes
can cause beam loss on apertures, or, when coupled toM56, phase
oscillations. Both effects change the beam induced voltage in
the cavities and can lead to unstable variations of the accelerat-
ing field. Stability analysis for small perturbations from equilib-
rium is performed and threshold currents are determined. Design
strategies to increase the instability threshold are discussed and
the high average power FEL proposed for construction at CE-
BAF is used as an example.

I. INTRODUCTION
Multipass recirculating, energy–recovering accelerators can

be cost–effective and energy–efficient driver accelerators to
high–average–power, high–efficiency, low–cost FELs. These
accelerators however, are prone to instabilities which arise from
fluctuations in energy which in turn cause current loss on aper-
tures, leading to rf field changes and further energy changes.
Furthermore, energy fluctuations coupled to compaction factors
of non–isochronous arcs can also cause changes in the arrival
time of the bunches at the entrance of the linac, leading to further
energy changes. These instabilities have been observed exper-
imentally in the energy recovery experiment performed at Los
Alamos [1]. Both types of instabilities (longitudinal and beam
loss) are analyzed here.

We start with the equivalent circuit model for a cavity, and
present the equation that describes the interaction between cav-
ity fields and the beam. Next we perform a stability analysis for
small perturbations from equilibrium and we derive expressions
for threshold currents for both types of instabilities. As a numer-
ical example we use the design parameters of the high average
power FEL proposed for construction at CEBAF. We conclude
with a discussion on the role of feedback and we outline plans
for future work.

II. EQUIVALENT CIRCUIT MODEL FOR A
CAVITY

An rf cavity powered by an rf source (klystron) can be repre-
sented by a resonant LCR circuit [2]. The beam in the cavity is
represented by a current generator. The interaction of the beam
with the cavity fields can be described, to a very good approxi-
mation, by the following first order differential equation,

dṼc

dt
+ ω0

2QL
(1− i tan9)Ṽc = ω0RL

2QL
( Ĩ g − Ĩb) (1)

whereω0 is the cavity resonant frequency,QL is the loadedQ of
the cavity andRL is the loaded shunt impedanceRL = (r/Q)QL .
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In arriving at (1) we assume that the cavity voltage, generator and
beam current vary aseiωt , whereω is the rf frequency, and̃Vc,
Ĩ g and Ĩb are the corresponding complex amplitudes (phasors)
in the rotating frame of reference, varying slowly with time. In
this equationIb is equal to the average beam current (in the limit
of short bunches) andIb denotes the magnitude ofĨb. Also9
is the tuning angle defined by tan9 = −2QL(ω − ω0)/ω0. In
steady–state the generator power is given by

Pg = (1+ β)
4β

I 2
g RL ,

whereβ is the cavity coupling coefficient, and can be calculated
from QL = Q0/(1+ β).

III. STABILITY ANALYSIS
As a concrete example, we take the energy–recovering driver

accelerator design of the CEBAF FEL [3]. The generalization
is straightforward. We assume that the accelerator consists of a
linac with a two–pass recirculation transport. The beam is in-
jected into the linac, accelerated and transported through the first
(low energy) arc. It then returns to the linac where it is acceler-
ated for a second time and transported through the second (high
energy) arc. A wiggler magnet in the middle of the second arc
provides the FEL interaction, as a result of which the beam loses
energy and greatly increases its energy spread. The resulting
beam is returned into the linac, decelerated for energy recovery
through two passes and then transferred into the dump. There-
fore, in this model, there are four beams in the linac cavities at
any time (two accelerating and two decelerating).

Furthermore, we limit the stability analysis to the linear regime
where perturbations from equilibrium are small. This linear ap-
proximation is sufficient for determining the stability boundaries
of the system and the growth rates of instabilities. Much of our
formalism is similar to the analysis of the rf stability in the Los
Alamos FEL energy recovery experiment [1].

Two effects may trigger an unstable behavior of the system:
beam current loss and shift in the arrival time of each pass at the
entrance of the linac. The beam current loss may originate from
an energy offset which shifts the beam centroid off its central
trajectory and leads to beam scraping on apertures. The phase
shift may originate from an energy offset coupled to the finite
compaction factors (M56) in the arcs.

We assume that the generator currentĨ g is constant and is

expressed in the polar form̃Ig = Igei9g . We assume that the
cavity voltage is perturbed in amplitude and phase, by ˆv(t) and
φ̂(t) respectively, therefore

Ṽc = [Vc0+ v̂(t)]ei [9c + φ̂(t)] .

We now write the expressions for the beams in each of the four
passes. We assume that the two accelerating–pass beams (pass
1 and 2) remain unperturbed and express them in polar form as



          
Ĩ1 = I0ei91, Ĩ2 = I0ei92, where91 and92 are the beam phases
with respect to the phase of the cavity voltage9c. However there
may be energy errors at the end of each pass given by

ε1(t) = Vc(t) cos [9c + φ̂(t)−91] − Vc0 cos(9c −91) (2)

for pass 1 beam, and

ε2(t) = ε1(t)+Vc(t) cos [9c + φ̂(t)−92]−Vc0 cos(9c −92)

(3)
for pass 2 beam, whereVc is the magnitude ofṼc. The two
decelerating beams can be perturbed both in magnitude and phase

Ĩ3 = [ I0+ ˆi3(t)]e
i [93+ φ3(t)]

Ĩ4 = [ I0+ ˆi4(t)]e
i [94+ φ4(t)]

where
ˆi3(t) = −b2I0ε2(t − τ2) (4)

φ3(t) = −h2ε2(t − τ2) (5)

and ˆi4(t) = ˆi3(t), φ4(t) = φ3(t). The coefficientsh2 andb2

are proportional to the compaction factor of the second arc and
its momentum aperture respectively, and can be expressed as

h2 = M56ω

cE
(6)

whereM56 is the compaction factor of the arc,ω is the rf fre-
quency,c is the speed of light andE the beam energy around the
arc. Similarly,b2 can be expressed as

b2 = − ηx

LE
(7)

whereηx is the horizontal dispersion (at the maximum point)
of the arc, andL is a loss coefficient which characterizes the
amount of beam loss; e.g., if 1 mm offset gives rise to 10−3 of
beam scraping, thenL = 1 m.

In addition we have taken into account the timeτ2 it takes the
electrons to travel around the second arc and through the linac.
To simplify the calculations we have assumed that the first arc is
isochronous (h1=0) and it has “infinite aperture” (b1=0).

It is assumed that all perturbations imparted to the equilibrium
state are small, ˆv ¿ Vc0, φ̂ ¿ 1, î3,4 ¿ I0, φ3,4 ¿ 1. We can
therefore linearize eqs (2), (3) to get

ε1(t) = v̂(t) cos(91)+ φ̂Vc0 sin(91)

ε2(t) = v̂(t)[cos(91)+ cos(92)]

+φ̂Vc0[sin(91)+ sin(92)]

where we have set9c = 0, without loss of generality. From eqs
(4) and (5) we writêi3(t) andφ3(t) as

î3(t) = −v̂(t − τ2)b2I0(cos91+ cos92)

−φ̂(t − τ2)b2I0Vc0(sin91+ sin92)

φ3(t) = −v̂(t − τ2)h2(cos91+ cos92)

−φ̂(t − τ2)h2Vc0(sin91+ sin92) .

Notice that perturbations on both decelerating beams can be ex-
pressed in terms of ˆv andφ̂ only through a series of nested rela-
tions. This is true for any number of passes and the problem at

the end amounts to finding the roots of the determinant of a 2×2
matrix.

Substituting the above equations into the cavity equation (1),
separating real and imaginary parts and performing the lineariza-
tion, we obtain two linear differential equations in ˆv andφ̂. To
study the stability of the system we assume that ˆv(t)andφ̂(t) vary
with time according toest, v̂(t) = v(s)est, φ̂(t) = φ(s)est, to
obtain two algebraic equationsM A = 0, whereM is a 2× 2
matrix andA is the column vector withv andφ as components.
The matrix elements ofM are

M11 = s+ ω0

2QL
− ω0RL

2QL
A1e−sτ2

M12 = Vc0

[
ω0

2QL
tan9 − ω0RL

2QL
B1e−sτ2

]
M21 = − ω0

2QL
tan9 + ω0RL

2QL
C1e−sτ2

M22 = Vc0

[
s+ ω0

2QL
+ ω0RL

2QL
D1e−sτ2

]
where

A1 = −I0h2(sin93+ sin94)(cos91+ cos92)

+I0b2(cos93+ cos94)(cos91+ cos92)

B1 = −I0h2(sin93+ sin94)(sin91+ sin92)

+I0b2(cos93+ cos94)(sin91+ sin92)

C1 = −I0h2(cos93+ cos94)(cos91+ cos92)

−I0b2(sin93+ sin94)(cos91+ cos92)

D1 = −I0h2(cos93+ cos94)(sin91+ sin92)

−I0b2(sin93+ sin94)(sin91+ sin92)

The determinant ofM is then set to zero and the two roots ofsare
examined. The real parts of the roots will provide the damping
or growth rates of perturbations. The imaginary parts of the
roots will give the oscillation frequencies relative to the driving
rf frequency. If both roots have zero or negative real parts, the
system is stable; otherwise the system is unstable. We found
that the 415 ns delay in the high–energy arc does not affect the
stability boundaries and growth rates significantly, therefore we
setτ2=0, and thus reduced the complexity of the calculation.

Taking this into account, the two roots ofs are

s=
(
ω0

2QL

){
−1+ 1

2
I0RL

[
(h2S+ b2C)±

√
Q
]}

where

Q=
√
(h2S+ b2C)2+ 4 tan9

RL I0
(−h2C + b2S)−

(
2 tan9

RL I0

)2

andSandC are defined as

S =
2∑

i=1

[sin(9i −93)+ sin(9i −94)]

C =
2∑

i=1

[cos(9i −93)+ cos(9i −94)]



         

From the two roots the one with the positive sign is the limiting
one. We can now derive an expression for the threshold current
of these instabilities, by settings=0. For the CEBAF FEL pa-
rameters, the longitudinal instability threshold current simplifies
to

I th = c E

RL M56ω cos29(S− C tan9)

where eq.(6) has been used forh2. This equation demonstrates
possible design strategies for increasing the instability threshold:

1. reducing the shunt impedance of the linac,
2. choosing the off–crest phases such that theS term cancels

theC tan9 term,
3. entirely or nearly isochronous arcs, even in the sense of

having opposite signs ofM56 in the two halfs of the arc
(before and after the wiggler),

4. lowering the rf frequency.
It is worth noting that this expression for the threshold current
agrees with the expression derived in reference [4] in its func-
tional dependency on energy, frequency, shunt impedance and
compaction factor.

The threshold for the beam loss instability is

I th = 2E

RL(ηx/L)C
,

where eq. (7) has been used forb2.

IV. THE HIGH AVERAGE POWER FEL AT
CEBAF: AN EXAMPLE

The driver accelerator for the high average power FEL pro-
posed for construction at CEBAF is a recirculating energy–
recovering 200 MeV, 5 mA cw superconducting rf (srf) electron
accelerator. The accelerator consists of a 10 MeV injector, a
96 MV srf linac with a two–pass recirculation transport which
accelerates the beam to 200 MeV, followed by energy recovery
deceleration through two passes to∼10 MeV, and then transport
to the dump.

Longitudinal dynamics imposes off–crest operation for the
four beams, and that in turn implies that the cavities must be
operated off resonance to minimize the required generator power.
In the baseline design the phases of the four beams are:91 =
1.80, 92 = −13.50, 93 = 195.30, 94 = 1800, thereforeS=
0.92 andC = −3.82. The optimum tuning angle is−61.50.
For M56 = −0.47m in the high energy arc, andE = 200 MV,
h2 is equal to−7.7× 10−8 rads/V. Assumingηx/L ≈ 1, b2 =
−5×10−9 A/V. For the above value ofh2, assumingb2 = 0, the
threshold for the longitudinal instability is 130µA. On the other
hand, forh2 = 0 and the assumed value ofb2, the threshold for
the beam loss instability is 1.4 mA. When both instabilities are
present, the threshold is dominated by the longitudinal one and
is 130µA. Clearly at these design parameters the threshold is
less than our design goal, therefore active feedback is required
to control the instability. Preliminary analysis indicates that the
gain of the rf feedback loop stabilizes the system.

An alternative lattice design has been developed which has
opposite signs ofM56 for the lattice segments entering and leav-
ing the wiggler (so that the totalM56 ∼0), and the beam phases
could be arranged to cancel, therefore on–resonance operation

would be possible. This alternative design is unconditionally
stable against the longitudinal instability becauseM56 ≈ 0 over
the second arc. For the alternative design (91 = 13.50, 92 =
00, 93 = 193.50, 94 = 1800), S ∼ 0 andC = −3.9. How-
ever both the baseline and the alternative scenarios have approx-
imately the same beam loss instability threshold.

V. CONCLUSIONS

The above analysis is valid only in the open loop case. The
presence of feedback will damp the growth of phase oscillations.
Since there is no phase shift induced by the instabilities, we ex-
pect that maximum gain is needed at the cavity resonance fre-
quency. Gains of 3000 (70 dB), which are typical in the CEBAF
rf control system at these frequencies, will effectively move the
threshold well above the 5 mA design current. Future directions
include incorporating feedback in our analysis and addressing
gain vs bandwidth questions.
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