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Abstract Inarriving at (1) we assume that the cavity voltage, generator and

Recirculating, energy—recovering linacs can be used as driver 3g&m current vary ad whereow is the rf frequency, anilc,
celerators for high power FELs. Instabilities which arise frorfp @nd I» are the corresponding complex amplitudes (phasors)
fluctuations of the cavity fields are investigated. Energy chand8dne rotating frame of reference, varying slowly with time. In
can cause beam loss on apertures, or, when coupMekighase his equation, is equal to the average beam current (in the limit
oscillations. Both effects change the beam induced voltageGhShort bunches) anth denotes the magnitude . Also W

the cavities and can lead to unstable variations of the accelef3f'€ tuning angle defined by tdn= —2Q\ (& — wo)/wo. In

ing field. Stability analysis for small perturbations from equilibSteady—state the generator power is given by

rium is performed and threshold currents are determined. Design 1+A) ,

strategies to increase the instability threshold are discussed and g = 48 lgRL

the high average power FEL proposed for construction at CE-

BAF is used as an example. whereg is the cavity coupling coefficient, and can be calculated

from QL = Qo/(1+ B).
I. INTRODUCTION

. _ _ _ lll. STABILITY ANALYSIS
Multipass recirculating, energy—recovering accelerators can _ )
be cost—effective and energy—efficient driver accelerators to*S & concrete example, we take the energy—recovering driver

high—average—power, high—efficiency, low—cost FELS. Theggcelerator design of the CEBAF FEL [3]. The generalization

accelerators however, are prone to instabilities which arise fr(ﬁ%tralghtforward. We assume that the accelerator consists of a

fluctuations in energy which in turn cause current loss on ap8pac With a two—pass recirculation transport. The beam is in-
tures, leading to rf field changes and further energy chang ted into the linac, accelerated and transported through the first
Furthermore, energy fluctuations coupled to compaction factdl@V €nergy) arc. It then retums to the linac where it is acceler-
of non—isochronous arcs can also cause changes in the arr%gfj for asecond_ time and trans_ported t.hrough the second (high
time of the bunches at the entrance of the linac, leading to furtﬁé]’er_gy) arc. A Wl_ggler m_agnet in the middle _Of the second arc
energy changes. These instabilities have been observed ex g)r\_/ldes the FEL interaction, as a result of which the beam loses

imentally in the energy recovery experiment performed at LGS1€79Y and greatly increases its energy spread. The resulting
Alamos [1]. Both types of instabilities (longitudinal and bea eam is returned into the linac, decelerated for energy recovery
loss) are analyzed here through two passes and then transferred into the dump. There-

We start with the equivalent circuit model for a cavity an&ore, in this model, there are four beams in the linac cavities at
present the equation that describes the interaction between &Y. ime (two accelerating and two decelerating). _
ity fields and the beam. Next we perform a stability analysis for Furthermore, we limitthe Stqt_"“t_y analysis to the "’?e"’.‘r regime
small perturbations from equilibrium and we derive expressiod'ere perturbations from equilibrium are small. This linear ap-
for threshold currents for both types of instabilities. As a numgproXimation is sufficient for determining the stability boundaries
ical example we use the design parameters of the high aver &Ehe §ystt_am _an_d the growth ratgs of mstabllltle_s_. MUCh of our
power FEL proposed for construction at CEBAF. We conclu grmallsm is similar to the analysis of the rf stability in the Los

with a discussion on the role of feedback and we outline plafi@mos FEL energy recovery experiment [1].
for future work. Two effects may trigger an unstable behavior of the system:

beam current loss and shift in the arrival time of each pass at the
Il. EQUIVALENT CIRCUIT MODEL FOR A entrance of the linac. The beam current loss may originate from
CAVITY an energy offset which shifts the beam centroid off its central
. trajectory and leads to beam scraping on apertures. The phase
An rf cavity powered by an rf source (klystron) can be represift may originate from an energy offset coupled to the finite
sented by a resonant LCR circuit [2]. The beam in the cavity égmpaction factorsNise) in the arcs.
represented by a current generator. The interaction of the beanje assume that the generator curréylis constant and is
W'trt]. thetc): a\t/r']ty ]]:'(Tllds .canf'bet de;cng%d, to ? \I/ery g?od apPro¥spressed in the polar foriy = I4e' Y9, We assume that the
mation, by the foflowing hirst order differential equation, cavity voltage is perturbed in amplitude and phaseyy and
dVe  wo _ ~  woRL ~ - ¢ (t) respectively, therefore
— + — A —-itan¥)Vo = —— (g — | 1
dt+2Q|_( )c 2Q|_(g b) ()
wherewy is the cavity resonant frequendy, is the loaded) of

the cavity andR, is the loaded shuntimpedanBe = (r/Q)QL. e now write the expressions for the beams in each of the four
*Work supported by the Virginia Center for Innovative Technology and DORASSES. We a.Ssume that the two acceleratmg—pass beams (pass
Contract # DE-AC05-84ER40150. 1 and 2) remain unperturbed and express them in polar form as

Vo = [Veo + d(t)]e [Ye T 3D)]



i1 = loe! V1, 1, = 19e! V2, wherew; andw, are the beam phasesthe end amounts to finding the roots of the determinant of 2 2
with respect to the phase of the cavity voltalge However there matrix.
may be energy errors at the end of each pass given by Substituting the above equations into the cavity equation (1),
- separating real and imaginary parts and performing the lineariza-
€1(t) = Ve(t) cos e + ¢(t) — Wa] — Veocos(We — W1) (2)  tion, we obtain two linear differential equationsirandg. To
study the stability of the system we assume tma)téndé(t) vary
with time according t&St, 5(t) = v(s)eSt, d(t) = ¢(s)eSt, to
€2(t) = e(t) + Ve (t) cos [We + () — W,] — Vo coS(W, — W,) Obtain two algebraic equatiod A = 0, whereM is a 2x 2
(3) matrix andA is the column vector with and¢ as components.
for pass 2 beam, wherg, is the magnitude of/;. The two The matrix elements dfl are
decelerating beams can be perturbed both in magnitude and phase

for pass 1 beam, and

wo wQ RL —ST
. . . My1 = S+ —— A.e 2
s = [lo + is(t)]el [V3 T ¢3(D] 2QL  2QL -
. ) . _ o _ woRL —S7y
lo = [lo + (a(h]el [¥e + 9a(V)] Mz = Voo [ZQL Y- oq0 e }
where Mor — “o_; @R - —s1,
- 21 = ———tan¥y + ——C;e
i3(t) = —baloex(t — 12) 4) 2Qu 2QL
R
¢a(t) = —hyea(t — 1) (5) Mz = Ve [s~|— 2%0 + ‘;‘;} . D1e_5T2:|
andias(t) = i3(t), ¢a(t) = ¢3(t). The coefficientr, andb, - -
are proportional to the compaction factor of the second arc aptlere
its momentum aperture respectively, and can be expressed as
M Ar = —lgha(sinWz + sinW,)(cosW, + cosvy)
hy, = ;’éw (6) +loba(cosWs + cosW,) (cosW; + cosWsy)
) ) ) By = —lgha(sinWs + sinWy,)(sinWy + sinWy)
where Msg is the compaction factor of the are, is the rf fre- Ib ” W) (SinW inw
quencyg is the speed of light anB the beam energy around the +loby(CoSWs + cosWa)(sinWy + sin W)
arc. Similarly,b, can be expressed as C1: = —lghy(cos¥; + cosWy)(cosW; + cosws,)
Tx —lgba(sinW3 + sinW,) (cosw, + cosw,)
bz = “LE ) D1 = —lgha(cosWs + cosWy,)(sinW; + siny)
wheren, is the horizontal dispersion (at the maximum point) —lghy(SiNW3 + sinWy) (SinW; + sinW,)

of the arc, and_ is a loss coefficient which characterizes th
amount of beam loss; e.qg., if 1 mm offset gives rise to®16f
beam scraping, thelh =1 m.

The determinant o/ is then set to zero and the two rootsafre
examined. The real parts of the roots will provide the damping

In addition we have taken into account the timet takes the or growth Tates of pe_rtur_batlons. Th_e imaginary parts Qf.the
roots will give the oscillation frequencies relative to the driving

electrons to travel around the second arc and through the Iinraﬁ.re uency. If both roots have zero or nedative real parts. the
To simplify the calculations we have assumed that the first arc Is q - g pars,

isochronoust{,=0) and it has “infinite apertureb{=0). system is stable; otherwise the system is unstable. We found

Itis assumed that all perturbations imparted to the equilibriutrrﬁat the 415 ns delay in the high—energy arc does not affect the

- ~ N stability boundaries and growth rates significantly, therefore we
state are smalh;_ L Voo, ¢ < 1134 <o, ¢34 < 1. We can setr,=0, and thus reduced the complexity of the calculation.
therefore linearize eqs (2), (3) to get

Taking this into account, the two roots fire
et) = B(t)Ccos(W) + pVeosin(Wy)

1) 1
) = D[CoS(Wr) + cos(Wy)] 5= (ﬁ) {—1+ S1oR.[(n2S+b2C) + @]}
+¢VeolSin (W1) + sin(Wy)]
where
where we have sek. = 0, without loss of generality. From eqgs
(4) and (5) we writés(t) andgs(t) as 4tanw 2 tanw \ 2
. Q=,/(hS+b,C)2 + (—hoC + byS) — ( )
i3(t) = —0(t — 12)bylo(COSW; + COSWy) Llo Rilo
—¢(t — T2)baloVeo(SiNWy + SiNWy) andSandC are defined as
¢3(t) = —0(t — o)hy(cos¥; + cosvy) 5
—¢(t — 12)haVeo(SinWy + sinWy) . S — Z[sin (U — W3) + sin(¥; — Wy)]
Notice that perturbations on both decelerating beams can be ex- 'Zl
pressed in terms af &nd¢ onlythrough a series of nested rela- cC = Z[COS(‘M — W3) + coS(Wj — W)

tions. This is true for any number of passes and the problem at =



From the two roots the one with the positive sign is the limitingrould be possible. This alternative design is unconditionally
one. We can now derive an expression for the threshold currstdble against the longitudinal instability becaliég ~ 0 over
of these instabilities, by settingr0. For the CEBAF FEL pa- the second arc. For the alternative design & 13.5°, W, =
rameters, the longitudinal instability threshold current simplifie®®, w3 = 1935°, ¥, = 187), S ~ 0 andC = —3.9. How-
to ever both the baseline and the alternative scenarios have approx-
_ cCE imately the same beam loss instability threshold.
RL Msgw co2 ¥ (S — C tany)
where eq.(6) has been used fpr This equation demonstrates
possible design strategies for increasing the instability threshold:
1. reducing the shunt impedance of the linac,
2. choosing the off—crest phases such thatSkerm cancels
theC tanV¥ term,
3. entirely or nearly isochronous arcs, even in the sense of
having opposite signs dfisg in the two halfs of the arc V. CONCLUSIONS
(before and after the wiggler),
4. lowering the rf frequency.
It is worth noting that this expression for the threshold current

agrees with the expression derived in reference_[4] in its func-The above analysis is valid only in the open loop case. The
tional dependency on energy, frequency, shunt impedance gpgsence of feedback will damp the growth of phase oscillations.

lth

compaction factor. . o Since there is no phase shift induced by the instabilities, we ex-
The threshold for the beam loss instability is pect that maximum gain is needed at the cavity resonance fre-
oF guency. Gains of 3000 (70 dB), which are typical in the CEBAF
lh= —— rf control system at these frequencies, will effectively move the
RL(nx/L)C threshold well above the 5 mA design current. Future directions
where eq. (7) has been used bgr include incorporating feedback in our analysis and addressing

gain vs bandwidth questions.
IV. THE HIGH AVERAGE POWER FEL AT
CEBAF: AN EXAMPLE

The driver accelerator for the high average power FEL pro-
posed for construction at CEBAF is a recirculating energy—
recovering 200 MeV, 5 mA cw superconducting rf (srf) electron
accelerator. The accelerator consists of a 10 MeV injector, a
96 MV sif linac with a two—pass recirculation transport which VI. Acknowledgments
accelerates the beam to 200 MeV, followed by energy recovery
deceleration through two passestd0 MeV, and then transport
to the dump.
Longitudinal dynamics imposes off-crest operation for the o
four beams, and that in turn implies that the cavities must he T e authors acknowledge the contributions of S. Benson and
operated off resonance to minimize the required generator powgr/N€il to this work.
In the baseline design the phases of the four beamsdye=
1.8°, v, = —135° w; = 1953° w, = 18CF, thereforeS =
0.92 andC = —3.82. The optimum tuning angle is615°.
For Msg = —0.47m in the high energy arc, artel = 200 MV,
h, is equal to—7.7 x 10°8 rads/V. Assumingj,/L ~ 1, by, =
—5x 107° A/V. For the above value df,, assumind, = 0, the
threshold for the longitudinal instability is 130A. On the other
hand, forh, = 0 and the assumed valuelnf, the threshold for
the beam loss instability is 1.4 mA. When both instabilities are

present, the threshold is dominated by the longitudinal one ami T.-S. Wang and H. Takeda, PAC Proceedings (1987)
is 130 uA. Clearly at these design parameters the threshold'is =~ ' '

less than our design goal, therefore active feedback is requirgfl p. B. wilson, SLAC-PUB-2884, February 1982.
to control the instability. Preliminary analysis indicates that the

gain of the rf feedback loop stabilizes the system. [3] D. Neuffer et al, these PAC proceedings (1995)
An alternative lattice design has been developed which has
opposite signs oMsg for the lattice segments entering and leay4] J. J. Bisognano and M. Fripp, Linac Conf Proc (1988)
ing the wiggler (so that the tot&llss ~0), and the beam phases
could be arranged to cancel, therefore on—resonance operation
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