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Abstract

The advanced accelerating cavities for the NLCTA (and antic-
ipated for NLC) will incorporate damping as well as detuning.
The damping is provided by a set of four waveguides (which also
serve as pumping manifolds) that run parallel to the structure,
with strong iris coupling to each cavity cell and terminated at
each end by absorbers. The previously reported [1][2] equivalent
circuit analysis has been refined and the dependence upon design
parameters explored. We find that adequate damping can be pro-
vided by a single waveguide mode, leading to designs which are
more compact than those initiallyconsidered. The design param-
eters and their rationale will be presented.

I. Introduction
The accelerating cavities for the NLC Test Accelerator

(NLCTA) will incorporate damping as well as detuning (the
DDS structure) [1][2]. The detuning suppresses the trans-
verse wakefield experienced by closely trailing bunches, and
the damping suppresses that experienced by the more remote
bunches. The damping is provided by a set of four waveguides
(which also serve as pumping manifolds) that run parallel to the
structure, with strong iris coupling to each cavity cell and termi-
nated at each end by absorbers. Absorption along the length of
the manifold may also be provided. In the following we first re-
view the underlying rationale of the manifold damping scheme
and describe improvements in the analyses which have taken
place since our last report [2]. This is followed by a descrip-
tion of our proposed design, its conceptual basis, and our current
plans for its implementation.

II. The manifold damping scheme
In the detuned structure cell dimensions are varied along the

length of the accelerator cavity in a gaussian manner so that the
frequencies of the lower dipole mode of the individual cells vary
over a range of approximately fifteen percent, and the frequen-
cies of the resultant coupled modes (i.e., cavity modes; when
not qualified, “mode” will be taken to mean “cavity mode”) vary
over a range of approximately 25%. As shown in [3], these
modes are localized standing waves with cell to cell amplitude
variation which may be viewed as an effective wavelength which
varies smoothly and extensively along the length of the mode.
Their structure can be interpreted in the following manner. Each
cell, if it were part of a periodic structure, would have associated
with it a phase advance per cell (and hence a phase velocity) as a
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functionof frequency. These quantities continue to have a signif-
icance in a localized sense when the cells are assembled to form a
detuned structure. Thus we speak of a local phase advance (”per
cell” is understood) and a local phase velocity. Modes termi-
nate within the structure where the local phase advance is either
zero or�, and approximately half the modes are entirely confined
within the structure with phase advance � at one end and zero
at the other. A particular mode is excited by a velocity of light
charge only if the range of local phase velocities associated with
it includes that velocity. Similarly the mode couples strongly to a
manifold mode only if the range also includes the phase velocity
of the manifold mode. This implies that the coupling of a mode
to a manifold mode is localized within the mode in the vicinity
of the cell where the velocity match occurs.

Our theoretical analysis of these structures has so far been
based on the single band equivalent circuit model discussed in
[2]. There we derived the following equation for the damped
cavity modes:
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The LHS of Eq. (1) corresponds to the cell characteristics and
the cell to cell coupling. Here am is the excitation of cell m,
fm its resonant frequency, f the coupled mode frequency, and
the km�1=2’s represent the coupling between adjacent cells. The
RHS of Eq. (1) represents the coupling of the cells to one another
via the manifold mode and their coupling to the matched loads
which are assumed to terminate the manifold mode at each end.
A summation over manifold modes (not shown explicitly to sim-
plify the notation) is to be understood. Here k̂m represents the
coupling of themth cell to the manifold mode, Z its wave impe-
dence, kg its propagation constant, and � = kgP where P is the
period. As discussed in [2], Eq. (1) is a linear eigenvalue equa-
tion in 1=f2 (with symmetric coefficients) when the RHS is ne-
glected, and standard matrix diagonalization techniques can be
used. The associated eigenvectors (column vectors in the am)
may be used in conjunction with the RHS to evaluate, by means
of standard perturbation theory formulas, both the real and imag-
inary parts of the frequency shift due to the manifold coupling.

Because the matrix elements of the RHS are complex and in-
volve the frequency in a complicated way, standard diagonaliza-
tion techniques cannot be used to solve the full equation. Our
procedure for determining the complex mode frequencies has
been based upon the fact that the determinant of the coefficients
of the am must vanish in order to have a non-trivial solution.
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Figure. 1. (a) Cell-center cross section of multimode manifold,
(b) cell-center cross section of single-mode manifold, (c) iris-
centered cross section of single-mode manifold, (d) 3D view of
single-mode manifold.

The mode frequencies for the undamped problem provide useful
starting frequencies for an iterative procedure to find the roots of
the determinant including damping. This approach has proved
to be stable only when the change due to the RHS is sufficiently
small. Alternating the iterative procedure with successive small
increases in the coupling strength has, however, enabled us to
overcome this limitation.

Once the frequencies have been determined it is staightfor-
ward to determine the mode vectors by means of Cramer’s rule.
We note that these vectors are also complex and while linearly
independent, are no longer orthogonal. We have examined the
space time behavior of a typical trapped mode making use of
computer graphics. The previously localized portion still domi-
nates the picture, but there is a small tail which extends over the
entire length of the structure and represents the response of the
cells to the field in the manifold. It has the character of an out-
going wave on both sides of the localization region with uniform
wavelength (reflecting the fact that the manifold in this simula-
tion was uniform). On the other hand, the ends of the localization
region exhibit an ingoing wave character corresponding to the
propagation of energy from the outer regions of the mode to the

region where the mode couples well to the manifold. These wave
propagation features can only occur for complex mode vectors.

The Bane-Gluckstern[3] procedure for relating these vectors
to the wakefield requires some modification. The details can not
be given here but we arrive at an analogue of their Eq. (2.48)
which for us takes the form:
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As compared to Bane and Gluckstern, our equation includes
small manifold-induced corrections to the parameters, the small
phase shifts�p, and of course the damping terms. We have omit-
ted a branch cut integral which corrects the behavior as s goes
to zero, becomes the dominant term for values of s much larger
than those of interest, but is believed to be negligible at s values
of interest.

We have compared the “exact” wakefield envelope function
obtained using the iterative procedure with that obtained from
perturbation theory, for a DDS with a single manifold mode hav-
ing a 12 GHz cutoff frequency and as large a coupling parameter
as we are likely to use. The difference between the iterative and
perturbative solutions is very small, and the coupling is strong
enough to produce very satisfactory damping (see Ref. [2]). The
Q values are about 1000. The shunt impedance degradation due
to the manifolds is less than 3% over the first 2/3 of the cells and
rises to a maximum of about 5% at the end of the structure.

III. The damped detuned structure design
The manifold geometry discussed in references [1] and [2] is

shown in midcell cross section in Fig. 2a. It has five propagating
modes within the lower dipole band, the upper four of which con-
tribute significantly to the damping. Because each of the mani-
fold modes has its own dispersion characteristic, each of them
couples to a particular cavity mode at a different cell. This is
a desirable feature for strong coupling because distributing the
damping along a cavity mode reduces the chance that its pattern
will distort so that it decouples itself. As discussed above, how-
ever, the needed coupling is not strong enough to produce signif-
icant distortion even in the single mode case. Thus while calcu-
lations showed that the multimode manifold yielded very satis-
factory damping with little shunt impedance degradation, it was
decided to proceed with a single mode manifold design.

Cross sections of a typical element of the new structure taken
at the center of a cell and at the center of the coupling iris are
shown in Figs. 2b and 2c, and a 3D view is shown in Fig. 2d. The
new structure is seen to be both simpler and more compact than
the multi manifold mode structure. MAFIA calculations show
that the propagating manifold mode has a strong TE10 charac-
ter. It has significant coupling only with the TE component of
the dipole modes. We recall that the dipole modes are hybrid TE-
TM modes, and that for the lower dipole mode the TE character
is dominant at low phase advance, while the TM character domi-
nates at large phase advance[4]. It is therefore necessary that the
phase velocity match between the dipole mode and the manifold
mode occur at low phase advance. We satisfy this requirement
by adiabatically tapering the properties of the manifold so that



the effective cutoff frequency of the manifold mode increases
as one proceeds down the structure. Hence at any specified fre-
quency the phase velocity of the manifold mode increases as one
proceeds along the structure. Thus for the new structure the con-
cept of local phase velocity applies both to the cavity mode and
the manifold mode, and the coupling between the two occurs
where these match.

We note that the manifold structure shown in Figs. 2b and 2c
bears little resemblence to a waveguide, since 5/6 of one of the
narrow walls is removed for coupling to the accelerator cells. If,
however one examines the mode spectrum and mode patterns in
a zero phase advance MAFIA calclation, one observes a mode
with a strong TE10 character well localized in the manifold, and
we take its frequency as the manifold cutoff frequency. Further-
more the dependence of frequency on phase advance is, for small
phase advance, quite similar to that of a waveguide with the cut-
off frequency as defined above. The behavior in the vicinityof an
avoided crossing is also very similar to the case of simple waveg-
uide coupling and we have used the same methodology to deter-
mine the coupling strength to the manifold.

The general features of our initial design proposal, based upon
the approach described above, are as follows: The thickness and
beam hole dimensions of the coupling irises are taken to be the
same as for the detuned structure already built and tested. The
outer diameter of the cell slots (L1) varies from 2 to 1.5 inches,
and their width is constant at 0.1968 inches. The slots in the cou-
pling iris coincide with those of the smaller adjacent cell along
width and outer circumference, while the inner diameter (L2)
varies from 1.2 to .71 inches. Over the last third of the structure
L2 is less than the outer diameter of the associated cells. The cut-
off frequency increases with decreasing (L1�L2) and also with
decreasing L1. Over the entire structure it ranges from 12.1 to
14.0 GHz. The avoided crossing occurs at phase advance vary-
ing from 25 degrees to 82 degrees. As this phase advance in-
creases, the cell to manifold coupling decreases. The decrease
in L2 has the opposite effect and was introduced to maintain the
coupling strength. This remedy has the undesirable effect of de-
creasing the shunt impedence of the accelerating mode, so that
it must be applied with circumspection. We note that there are
a few modes for which the manifold is cutoff, and a substantial
number for which it is cutoff at one end. The latter are presum-
ably damped in an irregular manner due to the reflection from the
cutoff end. None of the modes so affected intersect the light line
so that their loss factor and their effect on the wakefield envelope
function are expected to be small.

Once the manifold dimensions are fixed one must face the del-
icate task of determining the outer cell diameters (2b) so as to
obtain an accurately tuned accelerating mode. This dimension
has been accurately determined using a two dimensinal finite el-
ement program[5] for the detuned structure without manifolds.
The dimensions obtained in this way are sufficiently accurate to
permit construction with accurately machined parts without re-
quiring subsequent hand tuning. The three dimensional structure
with the manifolds is a more difficult computational challenge.
We have used a MAFIA based method which aims at computing
the difference in the cell diameter with and without slots. This
difference, which ranges from approximately 20 to 30 mils, is
then used to correct the previously determined accurate cell di-

ameter. A fine triangular mesh which accurately traces circles
of constant radius r has been used. The computed radii are be-
lieved to be correct to within 0.1 mils, and the frequencies are
expected to lie within 3 MHz of the design value (11.424 GHz).
This would be close enough to allow hand tuning. As a check on
our numerical methods and our evaluation of coupling parame-
ters six samples each of cells number 10, 70, 106, 156, and 196
are being fabricated for cold testing.

Our estimate of the wakefield damping which the new struc-
ture will exhibit is based solely upon the rather crude modeling
of [2]. It does not take account of the departure of the mani-
fold from a simple waveguide, and the effect of the tapering on
the modes which require damping has been inferred from the
adiabatic principle without any explicit calculation. We have
planned a theoretical program which deals with both of these de-
ficiencies. Also we recognize that the specification that the man-
ifolds be terminated by matched loads in their propagation range
may be difficult to realize in practice. Some theoretical effort
will be devoted to the design of load structures, and the possibil-
ity of distributed loading along the manifold with lossy materials
will be explored.
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