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                                 Abstract
Stability of the trapped ions in electron storage ring was studied
with a Hamiltonian formalism derived from the Mathieu
equation , in which the nonlinear field of the electron beam and
the Fourier component of the beam current were taken into
account.

                           I.  Introduction

  Stability of positive ions trapped ion electron beam in
electron storage rings can be distinguished by the matrix
method. This derives the critical mass of the trapped ions,
above which the ions are stable or the ions are trapped in the
electron beam. It has been observed that the trapped ions can be
eliminated by the partial fill mode operation, in which some
RF buckets are not filled with electron beam bunches [1,2,3].
The stability of the ions in this mode can also be distinguished
by the matrix method. But this method is only applicable in
case of linear field. The electric field produced by the electron
beam is highly nonlinear because of the Gaussian distribution
of the electron beam.
  Meanwhile, the stability was studied analytically on a special
partial fill mode, in which the electron beam was distributed
sinusoidally along the circumference of the ring [2]. In this
mode, the equation of motion of the ions can be expressed with
the Mathieu equation, so that the stability or instability of the
ion can be derived straightforwardly. But this method was also
discussed assuming linear field.
   The electric field is linear only in the region z≤ σz /2 (z=x or
y), so that the ions might be still trapped in or near the electron
beam even if the unstable condition is satisfied in the linear
field region. In the present paper we have studied the effects of
the nonlinear field with a Hamiltonian formalism derived from
the Mathieu equation. In addition, the beam current was
expanded in a Fourier series, so that any pattern of the beam
bunch distribution can be included in the present analysis.
Special attension is paid to the 1/3 fill mode being made in
ESRF, which will be probably applied to SPring-8.

            II.  Stability Analysis of Trapped Ions

A.  Hamiltonian Formalism

   The electron beam current can be expanded in the Fourier
series. The coefficients εm's of the Fourier component  for the
1/3 fill mode are given by εm=(6/mπ)sin(2mπ/3), where m
denotes the m-th component of the revolution frequency of the
electron beam. The equation of motion of the trapped ion for
one Fourier component can be written as

        d2u
dt2 + ωi0

2 1+εm cos mω0+θm f u = 0 (1)

where u=x/σx  or y/σy, ωi0 is the oscillation frequency of the
ion in the linear field,  ω0 is the revolution frequency of the
electron beam, θm is the initial phase and f(u) is the position
dependence of the electric field. Introducing the following
definitions

     ωm=mω0/2,   ωi0=ωm+∆ω  and   θ=ωmt, (2)

and taking up to the third power of the nonlinear field, at first,
we can write Eq.(1) as follows,

         d2u
dθ2 + u + δ + εm 1+δ cos 2θ+θm u

   -k3 1+δ 1+εm cos 2θ+θm u3 = 0, (3)

       ( δ=2δm+δm2,   δm=∆ω/ωm )

Equation (1) is obtained from the following Hamiltonian,

       H = 1
2 pu

2 + u2 + 1
2 δ +εm 1+δ cos 2θ+θm u2

                  - 1
4 k3 1+δ 1+εm cos 2θ+θm u4  , (4)

                             pu = ∂u/∂θ

Introducing the following canonical transformation

         u = 2J cos θ+Φ    and      pu = - 2J sin θ+Φ , (5)

and taking the average of the Hamiltonian over θ=0~2π, we
find

           H1 = 1
2 J δ + 1

4 J εm 1+δ cos θm-2Φ

      
   - 3

8 J2 k3 1+δ - 1
4 J2 k3 1+δ εm cos θm-2Φ , (6)

where we have assumed J is constant over the above period.
Because of no dependence on θ,  H1 is a constant of motion.
Introducing again the following canonical transformation,

       Z = 2J cos Φ+Φ0    and      P = - 2J sin Φ+Φ0 , (7)  

we obtain

    H2 = A Z2+P2 + B Z2-P2 - C Z2+P2 2 -D Z4-P4 ,   (8)

with           A = δ/4 ,      B = εm 1+δ /8

           C = 3 k3 1+δ /32 ,      D = k3 εm 1+δ /16
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Figure 1. Stability diagram of  CO+ ion in the 1/3 fill mode in
ESRF and SPring-8. The ion is unstable in the shaded and
dotted regions.

B.   Trajectory in the phase space  and stability diagram

   In case of the linear field (k3=0), we have C=D=0, so that the
trajectory in the phase space (Z, P) is ellipse (stable or trapped)
or hyperbola (unstable), which is determined by the relation of
A  and B. The boundary of the stable and unstable regions is
separated by the following function

                g χ =
2χ 2+χ

1 + χ 2

                      = 4χ - 6χ2 + 8χ3... (9)

with χ=δm. In case of the 1/3 fill mode the bandwidth of the
unstable region can be written as

           δQi≈εmmh/4 =(3h/2π)|sin(2πm/3)|, (10)

where h is the resonant mode number of the Mathieu equation,
and Qi is defined as

             
   

Qi =
ωi0
ω0

= 2π
rp
ec

I0
A

R2

σx σy

1
2

, (11)

with rp; the classical proton radius, e; the charge of the
electron, c; the velocity of the light, I0; the average beam
current, A; the mass number of the trapped ion, and R; the
average radius of the storage ring. Figure 1 represents the
stability diagram of CO+ions in the 1/3 fill mode of ESRF and
SPring-8 determined by the linear field approximation. In the
figure the ordinate is Qi and the absciss is the average beam

current. The solid curves in the figure represent the current
dependence of Qi, and the ion is unstable in the shaded and
dotted regions. In this approximation the ion is unstable at any
beam current.
   In case of nonlinear field with k3 ≠0, the ion is always
bounded. Examples of the trajectory in the phase space (Z, P)
are shown in Fig.2   for   different value of δm's at εm=0.1.
Even at εm=1, the trajectory is also bounded within a few σz.
The results are not much different even if we add the fifth power
term of the nonlinear field as shown in Fig.3.  The
Hamiltonian becomes very complicated if we  introduce higher
power terms further. ����������
   Now we consider again the stability of the trapped ion in the
linear field in case of an equidistant several bunch mode
operation. In case of 21 bunch mode operation in SPring-8, for
instance, we have εm≈1 for m=21, 42, 63 .... Taking into
account the width of the unstable region at εm=1, we obtain
the stability diagram shown in Fig.4.  As shown with a solid
circle in the figure, there are critical value Qic and I0c, below
which the ions are stable. From the analysis of the unstable
region determined by the function g(χ), we obtain Qic=m*/√6,
where m* is the minimum m, which is 21 in the present case.
Meanwhile, we have from the above definition of Qi

                 Qic = α I0c/Ac = α I0/Ac   , (12)

Consequently, we find the following critical mass,

     

Figure 2. Ion trajectory in the phase space (Z, P). The
nonlinear field was taken into account up to the third power of
the field expansion.
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 , (13)

This is very close to the critical mass derived by the matrix
method.

Figure 3. Ion  trajectory in the phase space. The nonlinear field
was taken into account up to the fifth power.

                           III.  Conclusion

   We have discussed the stability of the trapped ions in the
electron beam with the Hamiltonian formalism by taking into
account the nonlinear field produced by the electron beam and
the Fourier component of the beam current. It was found that
the ions are bounded within a few σ's of the electron beam size
so long as the nonlinear field is considered up to the fifth power
of the field expansion. It is required to investigate the stability
by including higher power terms further. Meanwhile, in the
linear field approximation, we have derived the critical mass
from the present formalism, which is close to the mass derived
from the matrix method. Therefore, the present formalism is
more general than the matrix method, and will be useful to
make a further investigation on the ion trapping.

Figure 4. Stability diagram of CO+  and H2+ ions in the
equidistant 21 bunch mode of SPring-8.
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