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Crystalline Beams

 

*

 

 are an ordered state of an ensemble of
ions, circulating in a storage ring, with very small velocity
fluctuations [1,2]. They can be obtained from ordinary 

 

warm

 

ion beams with the application of powerful cooling techniques
(stochastic, electron, laser, ...). Depending on the focussing
properties and dimensions of the storage ring, and on the ion
beam density, several ground states are possible [3-4]. All of
them can be visualized as a bundle of n

 

s

 

 symmetrically distrib-
uted, parallel 

 

strings 

 

[5]. The longitudinal ion separation 

 

λ

 

 is
the same for all 

 

strings

 

. The minimum temperature that can be
achieved depends on the background noise of the cooling tech-
nique used. It is required for stability that the vibration ampli-
tude of the ions is only a fraction of the separation 

 

λ

 

.

 

I. COLLIDING CRYSTALLINE BEAMS

 

There are several advantages in using colliding Crystalline
Beams. First, it is possible to obtain more-compact beams.
Second, most importantly, the particles in each beam occupy
well-defined and rigid positions. The uncertainty on the trans-
verse location of each 

 

string

 

 is considerably smaller than the
longitudinal spacing 

 

λ

 

. By carefully aligning the two beams to
pair countermoving 

 

strings

 

 in the collision, it is possible to
increase the luminosity by a considerable factor. Indeed the
luminosity in this case is proportional to the number of 

 

strings

 

in each beam
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is the contribution to the luminosity from each pair of counter-
moving 

 

strings

 

; f

 

enc

 

 is the frequency of encounter, 

 

σ

 

eff

 

 is an
effective cross section which is the common transverse dimen-
sion of the two 

 

strings

 

 during collision, and N

 

s

 

 is the number
of circulating ions per 

 

string

 

 engaged in the collision at one
time, assuming that the two countermoving beams are identi-
cal.

 

II. COLLISION BETWEEN STRINGS

 

The easiest example to investigate is the case of two iden-
tical Crystalline Beams sharing the same storage ring. The two
beams are moving in the opposite direction along the common
closed orbit. We require that the ions in the two beams have the
same magnetic rigidity, mass number A, and charge state Q.
But they must have opposite sign of the electric charge, if the
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bending along the closed orbit is due to a common axial mag-
netic field. Thus, one beam is made of partially-stripped, posi-
tively-charged ions, and the other beam is made of the same
ions with an excess of electrons (negative ions). We shall not
debate here how this can be realized in practice, but only
assume that it is possible.

It is also sufficient to investigate the case of collision
between paired 

 

strings

 

 and neglect the presence of the others in
the background which are taken to be at a sufficiently large dis-
tance. We shall assume that the two countermoving 

 

strings

 

 are
initially separated vertically by some distance 2b, and want to
investigate the behavior and the stability of the motion of the
ions when the separation distance b is reduced and the 

 

strings

 

are brought closer for collision.

 

III. EQUATIONS OF MOTION

 

If the two 

 

strings

 

 were moving in the same direction, the
configuration expected is that of a 

 

vertical zigzag

 

 [4] of which
the properties are known. In the present case, the two strings
move parallel to each other, but in opposite direction, each with
velocity 

 

β

 

c. As the ions of one 

 

string

 

 pass along the reference
ion in the other 

 

string

 

, the motion of this is modulated periodi-
cally in all directions. We shall assume that the modulation has
an amplitude small compared to the separation 

 

λ

 

, and linearize
the equations of motion which apply, for symmetry, to all parti-
cles. They are [5]:

b

 

″

 

   +   K

 

v

 

(s) b   +    K

 

sc

 

 f

 

3

 

(

 

α

 

, 

 

τ

 

) b / g

 

0

 

   =  0      (3)

a

 

″

 

   +   K

 

h

 

(s) a   =    h(s) 

 

δ

 

          (4)

 

σ′

 

   =   h(s) a      

 

−

 

     

 

δ

 

 / 

 

γ

 

2

 

          (5)

 

δ′

 

   =  

 

−

 

 (

 

γ

 

2

 

 

 

λ

 

 K

 

sc

 

 / 2 g

 

0

 

) [df

 

1

 

(

 

α

 

, 

 

τ

 

) / d

 

τ

 

]       (6)

The force acting on the test particle is the one generated by
all the ions of the countermoving 

 

string

 

. Those ions on the same

 

string

 

 do not contribute to the total force. In Eq.s (3-6) the inde-
pendent variable is the path length s along the common closed
orbit. A prime denotes differentiation with respect to s. b is the
vertical displacement from the median plane of symmetry, a is
the radial displacement, 

 

σ

 

 the path length difference, and 

 

δ

 

 the
momentum deviation from the reference closed orbit condi-
tions. K

 

v,h

 

 are the focussing functions which we approximate
with constants (

 

ν

 

v,h

 

 / R)

 

2

 

, where 

 

ν

 

v,h

 

 are the betatron tune num-
bers and R is the average closed orbit radius. h(s) is the curva-
ture function, which we also approximate with 1/R. 

 

β

 

 and 

 

γ

 

 are
respectively the velocity and energy relativistic factors. g

 

0

 

 = 1.3
is a constant. The space-charge constant [5]
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where the critical spacing [5]
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and r

 

0

 

 = 1.535 x 10

 

-18

 

 m is the proton classical radius. Finally,
the form factors
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where the aspect ratios 

 

α

 

 = 2b / 

 

λγ

 

 and 

 

τ

 

 = 2s / 

 

λ

 

. The form fac-
tors are periodic with respect to 

 

τ

 

 with a periodicity of one.

 

IV. CASE OF LARGE SEPARATION

 

In the limit of large separation among the two 

 

strings

 

, that
is 

 

α

 

 > 1, f

 

3

 

 is about constant, whereas df

 

1

 

 / d

 

τ

 

 oscillates around
zero. In the smooth and linear approximation, ignoring the cur-
vature of the storage ring, we can decouple the vertical motion
from the longitudinal one. Because the two beams have oppo-
site charge sign and f

 

3

 

 > 0 for all values of 

 

α

 

 and 

 

τ, it is seen
that the third term at the l.h. side of Eq. (3) adds to the focus-
sing of the storage ring. We can estimate the betatron tune-shift
as 

δνv  =  Ksc <f3> R2 / 2 ν0 g0       (10)

where  <f3>  ~ 2 / α2. If the tune-shift does not exceed half of
the distance  ∆νv to the nearest half-integral stopband the
motion is stable [5].

At the same time, particles oscillate longitudinally (σ)
around their stationary position with an amplitude

σ0 / λ  =  λ2 Ksc ∆ / 8 g0       (11)

where ∆ < 0.01 for  α > 1 and is a slow function of α. Thus, for
large separation between the countermoving strings, the
motion is stable, and the configuration of each string in not dis-
rupted.

V. CASE OF CLOSE COLLISION

As the two strings are brought together in collision, we
reach a range of aspect ratios α << 1. In this range, the form
factor f3 essentially vanishes over the full period of τ, except
that periodically, at τ = integer, it transforms to a kick. In the
smooth approximation, we can spread the kick evenly over one
period. Solving Eq. (3) in the same approximation again leads
to the tune-shift (10). Since  <f3>  ~ 2 / α2, Eq. (10) sets a limit
to the aspect ratio α below which the relation cannot be satis-
fied. At the limit of stability of individual strings,  λ ~  λc, there
is a threshold value of the aspect ratio

α2  >  1 / νv ∆νv  =  αtrans
2     (12)

below which the configuration of the two strings is destroyed.
As a consequence, a large betatron tune νv and a large periodic-
ity of the storage ring is desired (so that  ∆νv ~ νv / 2) to allow
the lowest possible threshold value αtrans.

As the separation 2b between the two strings reduces, the
longitudinal force acting on the test particle has still an oscilla-
tory behavior around zero, but with a waveform grossly dis-
torted from a pure sine-wave. The amplitude of the oscillation
increases as  ∆ ~ 1 / 2 α2 for α << 1. Inserting this at the r.h.
side of Eq. (11) gives the amplitude of the longitudinal oscilla-
tions. To avoid disruption of both strings, we require  σ0 < λ / 2.
That is, at the limit of individual string stability, when  λ ~  λc,
the aspect ratio cannot be reduced below the threshold value

α2  >  (λ / R)2 / 4 g0  =  αlong
2    (13)

VI. CONCLUSIONS

In conclusion, two strings, moving in the opposite direction
in the same storage ring, separated vertically by the aspect ratio
α, have a stable configuration with the ions performing small-
amplitude oscillations around their otherwise stationary posi-
tion, provided that the vertical separation is sufficiently large.
Two criteria are to be satisfied, namely Eq.s (12 and 13). In a
typical storage ring, it is found that the limitation is caused
mainly by the transverse forces, and that the smallest separation
that can be achieved between the two strings is set by the beta-
tron tune

α   =   2 b / λ γ   ~  1 / νv    (14)

We have seen that according to Eq. (2) the luminosity
depends on the effective cross section σeff of the two strings
colliding with each other, given by the background noise of the
cooling method used. For the effective collision of the two
strings, it is also required that the separation b, set by Eq.s (12
or 13), is sufficiently smaller than  σeff.
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