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Abstract

A quasi-classical method is developed to calculate the radiation
damping of a relativistic particle in a straight, continuous focus-
ing system. In one limiting case where the pitch angle of the
particleθp is much larger than the radiation opening angle 1/γ ,
the radiation power spectrum is similar to synchrotron radiation
and the relative damping rate of the transverse action is propor-
tional to the relative energy loss rate. In the other limiting case
whereθp ¿ 1/γ , the radiation is dipole in nature and the rela-
tive damping rate of the transverse action is energy-independent
and is much faster than the relative energy rate. Quantum exci-
tation to the transverse action is absent in this focusing channel.
These results can be extended to bent systems provided that the
focusing field dominates over the bending field.

I. INTRODUCTION

Radiation reaction including damping and quantum excita-
tion has been studied extensively in synchrotrons and storage
rings [1]. Recently, we demonstrated [2] that in a straight, con-
tinuous focusing channel, the radiation reaction is essentially
different from that in a bending magnet. A fully quantum me-
chanical approach was used to investigate in detail the radiation
reaction in the caseγ θp ¿ 1 where the radiation is formed over
many oscillation wavelengths. We have shown that the trans-
verse action damps exponentially with an energy-independent
damping rate, and that no quantum excitation is induced. Asγ θp

becomes much larger than one, the radiation is formed in a small
portion of one wavelength, which can be nearly replaced by a
segment of a circle. Therefore, both the radiation spectrum and
the radiation damping will be similar to that from a sequence of
bending magnets. In this paper, to illustrate the smooth transition
between these two limiting cases, we develop a quasi-classical
method to evaluate the radiation damping rate for anyγ θp and
obtain the expected results in both small and largeγ θp limits.
Then we extend these findings to focusing-dominated bent sys-
tems and consider the possibility of beam cooling based on the
damping effect.

II. RADIATION

Let us consider a planar focusing system that provides a con-
tinuous parabolic potentialK x2/2, where K is the focusing
strength. A charged particle with energyE = γ mc2(γ À 1)

oscillates in the transversex direction while moving freely in
the longitudinalz direction with a constant longitudinal momen-
tum pz in the absence of radiation. Define the pitch angle of
the particleθp = px,max/pz (px,max being the maximum trans-
verse momentum) and assume thatθp is always much less than
one. The motion of the particle can be decomposed into two
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parts: a free longitudinal motion and a transverse harmonic os-
cillation; i.e., we haveE ' Ez + Ex with Ez = √

m2c4 + p2
zc2

andEx = p2
xc2/2Ez + K x2/2.

A quantum mechanical theory of radiation and radiation re-
action for such a system was given in Ref. [2]. We only need
to know thatEx = (n + 1/2)h̄ωz, wheren = 0, 1, 2, ... is the
transverse quantum number andωz =

√
Kc2/Ez is the trans-

verse oscillation frequency. For sufficiently large quantum num-
bern, the transverse motion is classical and the radiation can be
described by classical electrodynamics provided that the typical
photon energy emitted is much smaller than the energy of the
particle. Thus the energy radiated per unit solid angle per unit
frequency is given by [3]

d2E

dÄdω
= e2ω2

4π2c

∣∣∣∣ ∫ ∞

−∞
En × (En × Eβ)ei ω(t ′−En·Er /c)dt′

∣∣∣∣2 , (1)

where En is the unit vector from the source to the observation
point, Eβc andEr are the velocity and position of the particle at the
retarded timet ′.

We can express Eq. (1) in the form of a double integral with
respect tot1 andt2:

d2E

dÄdω
= e2ω2

4π2c

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2( Eβ1 · Eβ2 − 1)ei (81−82), (2)

where we have introduced the notationEβ1,2 = Eβ(t1,2), Er1,2 =
Er (t1,2) and81,2 = ω(t1,2 − En · Er1,2). Going over to the new
variables of integrationt andτ via the transformationt1 = t −
τ/ωz andt2 = t +τ/ωz, and treating the integrand in the integral
with respect tot as the angular spectral distribution of the radiated
power at timet , we have

d3E

dtdÄdω
= e2ω2

2ωzπ2c

∫ ∞

−∞
dτ( Eβ1 · Eβ2 − 1)ei (81−82). (3)

The averaged radiated power is obtained by integrating over
dÄdω and then averaging over one oscillation period (indicated
by 〈 〉). In the system we consider here, it can be shown that [4]〈

d E

dt

〉
= 2ie2

πc
ω2

zγ
2
∫ ∞

0
ξdξ

∫ ∞

−∞

dτ

τ
g(τ, ξ)e−i f (τ,ξ); (4)

f (τ, ξ) = 2ξτ [1 + γ 2θ2
p(1 − sin2 τ/τ 2)/2],

g(τ, ξ) = J0(u) + γ 2θ2
p sin2 τ [ J0(u) − i J1(u)],

u = γ 2θ2
pξ(sin2 τ/τ − sin 2τ/2), ξ = ω/2γ 2ωz,

andJν(u) is the Bessel function of orderν (ν = 0, 1, 2, ...).
Equation (4) is completely general for anyγ θp. The con-

tour of integration with respect toτ must be displaced below
the real axis aroundτ = 0 to guarantee the vanishing radiation
when the field is switched off [4]. The range ofτ that gives
a significant contribution to the integral can be defined as the



           
ratio of the radiation formation lengthlr to the oscillation wave-
lengthλz = 2π

√
Ez/K = 2πc/ωz [5]. Sincelr is of the order

〈ρ〉/γ [1], where〈ρ〉 is the averaged radius of curvature and can
be approximated as〈ρ〉 ∼ E/(K A) ∼ λ2

z/A ∼ λz/θp, the ratio
lr /λz is inversely proportional toγ θp. We consider two oppo-
site limitsγ θp À 1 andγ θp ¿ 1 where Eq. (4) can be greatly
simplified.

In the caseγ θp À 1 or lr ¿ λz, using the integral representa-
tions of the Bessel functions and the method of stationary phase
aroundτ = 0, we obtain the asymptotic expression of Eq. (4) [5]〈

d E

dt

〉
= 4e2γ 2ω2

z√
3πc

∫ π

−π

dψ

2π

∫ ∞

0
ξdξ

∫ ∞

χ

K5/3(y)dy, (5)

whereχ = 4
√

2ξ/[3γ θp(1−sinψ)1/2] andK5/3(y) is the modi-
fied Bessel function of order 5/3. This expression is very similar
to the frequency spectrum of synchrotron radiation [3], withχ

here playing the role ofω/ωc. Thus the equivalent critical fre-
quency isωc ∼ γ 3θpωz, or the equivalent rotational frequency
is ω0 ∼ c/〈ρ〉 ∼ θpωz.

In the caseγ θp ¿ 1 or lr À λz, expanding the integrand in
Eq. (4) to leading order inγ θp and applying contour integration
in the complexτ plane, we get [5]〈

d E

dt

〉
= e2γ 4θ2

pω
2
z

c

∫ ∞

0
dξξ [1 + 2ξ(ξ − 1)]2(1− ξ) , (6)

where2(1 − ξ) is the Heaviside step function. Sinceξ =
ω/2γ 2ωz, we conclude that the radiation frequency distribution
has a sharp cutoff atωd = 2γ 2ωz, which is the characteristic of
dipole radiation.

In both cases, we can carry out the integrals in Eq. (5) and (6)
and find the averaged radiation power〈d E/dt〉 = e2γ 4θ2

pω
2
z/3c.

By using relationsθ2
p ' 2Ex/E ' 2nh̄ωz/E andω2

z ' Kc2/E,
we see that the rate of energy loss agrees with that in Ref. [2].

III. RADIATION DAMPING
The differential radiation power spectrum (i.e., Eq. (3)) can be

used to define the differential number rate of photon emissions as
follows: Let R(ω, Ä) be the number of photons emitted per unit
time with energies between̄hω andh̄(ω + dω) in the directions
betweenÄ andÄ + dÄ, i.e.,

R(ω, Ä) = 1

h̄ω

d3E

dtdÄdω
, (7)

then the average rate of change of any physical quantity, sayF ,
is given by〈

d F

dt

〉
=

∫ 2π/ωz

0

ωzdt

2π

∫
dω

∫
dÄ

∣∣∣1F(ω, Ä)

∣∣∣R(ω, Ä), (8)

where1F(ω, Ä) is the change ofF after a photon with energy
h̄ω is emitted in the directionÄ. For example, the rate of energy
loss〈d E/dt〉 is obtained by replacing1F with 1E = h̄ω and
is given in the previous section.

The transverse actionJx is defined through the relationJx =
Ex/ωz = (n + 1/2)h̄ ' nh̄. For small change ofJx after
a photon emission, we have1Jx ' 1Ex/ωz − 1ωzEx/ω

2
z.

The energy and the longitudinal momentum conservation require
1Ex ' h̄ω(1 − β cosθ)[2], whereθ is the angle between the
photon direction and the longitudinal direction. Writing1ωz '
−h̄ωωz/2E ' −h̄ωωzθ

2
p/4Ex, we get

1Jx ' h̄ω(1 − β cosθ + θ2
p/4)

/
ωz , (9)

which is always positive definite. Thus the transverse action al-
ways decreases after a photon emission process and the quantum
excitation is absent in such a system. This result was obtained for
the transverse quantum numbern based on the same kinematic
argument in Ref. [2].

The damping rate of transverse action〈d Jx/dt〉 is obtainable
by replacing1F in Eq. (8) with1Jx in Eq. (9). With the expan-
sion 1− β cosθ = 1/(2γ 2) + θ2/2, 〈d Jx/dt〉 can be written as
〈d Jx1/dt〉 + 〈d Jx2/dt〉, where〈

d Jx1

dt

〉
= 1

ωz

( 1

2γ 2
+ θ2

p

4

)〈
d E

dt

〉
,〈

d Jx2

dt

〉
=

∫ 2π/ωz

0

ωzdt

2π

∫
dω

∫
dÄ

1

ωz

θ2

2

d3E

dtdÄdω
. (10)

The first of the above equations is simply proportional to the
rate of energy loss found in the previous section. The second
one involves a more complicated angular integral. Together they
account for the radiation damping for anyγ θp.

In the caseγ θp À 1, Eq. (10) can be simplified as [5]〈
d Jx1

dt

〉
= 1

ωz

θ2
p

4

〈
d E

dt

〉
, (11)〈

d Jx2

dt

〉
= ie2

2πc
ωzγ

2θ2
p

∫ ∞

0
ξdξ

∫ ∞

−∞

dτ

τ
h(τ, ξ)e−i f (τ,ξ);

h(τ, ξ)= J0(u) + i J1(u) + γ 2θ2
p sin2τ

[ J0(u)

2
+ J2(u)

2

]
.

All quantities used above are defined in Eq. (4). Similar to the
calculation of the averaged radiation power, we can show [5]
〈d Jx1/dt〉 = 2〈d Jx2/dt〉 = e2γ 4θ4

pωz/12c. By using the rela-
tion Jx/E ' θ2

p/(2ωz), it is straightforward to obtain

1

Jx

〈
d Jx

dt

〉
= 3

4

1

E

〈
d E

dt

〉
. (12)

Thus, the relative damping rate of the transverse action is pro-
portional to the relative energy loss rate, which depends on both
energy and the transverse action. This result resembles the radi-
ation damping in a bending magnet [1], with the numerical dif-
ference due to the chromatic effect and the sinusoidal variation
of the focusing field [5].

In the caseγ θp ¿ 1, Eq. (10) becomes [5]〈
d Jx1

dt

〉
= 1

ωz

1

2γ 2

〈
d E

dt

〉
,〈

d Jx2

dt

〉
= e2ωz

πc

∫ ∞

0
dξ

∫ ∞

−∞

dτ

τ 2
g(τ, ξ)e−i f (τ,ξ). (13)

Applying contour integration again, we can show [5]
〈d Jx1/dt〉 = 〈d Jx2/dt〉 = e2γ 2θ2

pωz/6c. Therefore,〈
d Jx

dt

〉
= 1

3

e2γ 2θ2
pωz

c
= 2

3

reK

mc
Jx, (14)



           
wherere = e2/mc2 is the classical electron radius. We see
that the transverse action damps exponentially with an energy-
independent damping constant0c = 2reK/3mc. An identi-
cal result for the transverse quantum numbern was obtained in
Ref. [2] for the “undulator regime” whereγ θp ¿ 1. We also
notice that the relative damping rate of the transverse action is
much faster than the relative energy loss rate in this regime since

0c = 1

Jx

〈
d Jx

dt

〉
À 1

E

〈
d E

dt

〉
= 0c

2
γ 2θ2

p . (15)

We have shown that the radiation damping in a straight, con-
tinuous focusing channel is fundamentally different from that
in a bending magnet. In the longitudinal direction the particle
recoils against the emitted photon to conserve the longitudinal
momentum between the two particles. However, in the trans-
verse direction, the existence of the focusing force destroys the
momentum balance and suppresses the direct recoil effect. As a
result, the radiation reaction is not opposite to the photon emis-
sion direction, but always has a component pointing towards the
focusing axis.

IV. FOCUSING-DOMINATED SYSTEMS
So far we have assumed that the focusing system is straight.

In fact, the above discussion can be extended to bent systems un-
der certain conditions. Consider a bent system with a constant
radiusρ. A highly relativistic particle of energyE being bent
by a uniform magnetic field,B = E/ecρ, radiates at the rate
〈d E/dt〉 = 2recE4/(3m3c6ρ2). Thus the characteristic damp-
ing (or anti-damping) rate in all three degrees of freedom due to
the bending is0b ∼ 〈d E/dt〉/E = 2recγ 3/(3ρ2).

In addition, the particle radiates while executing rapid beta-
tron oscillations around the circular bent trajectory due to the
focusing field. If the bending is adiabatic and the particle’s pitch
angle relative to the ideal orbit is small compared with 1/γ , the
transverse damping rate due to betatron oscillations can then be
approximated by0c = 2reK/3mc, as discussed in the previous
section. Taking the ratio of these two rates, we obtain:

0b

0c
= λ̄β

2

(ρ/γ )2
, (16)

whereλ̄β = λβ/2π = √
E/K = c/ωs is the reduced beta-

tron wavelength. Equation (16) shows that ifρ/γ À λ̄β , the
transverse damping due to local oscillations is much stronger
than that from the global bending of the trajectory. Since
ρ/γ = E/γ ecB = mc/eB, we conclude that in a system that
satisfiesmc/eB À √

E/K or K À γ e2B2/m, the radiation
damping is dominated by the focusing field.

To illustrate the choice of parameters for such a system, we
consider a numerical example: a focusing-dominated low en-
ergy electron ring. Let us assume that the radius of the ring is
ρ = 33m and thatE = 0.1GeV electrons circulate around the
ring. A rather weak magnetic fieldB = 0.01T is required to
confine the particles on the ideal circular trajectory. Suppose
along the ideal trajectory, the electrons are continuously focused
with the focusing strengthK = 30GeV/m2, so the reduced be-
tatron wavelength ¯λβ is about 5.8cm andρ/γ is about 17cm.
From Eq. (16), we see that the transverse damping rate due to

the focusing field is about nine times as fast as the characteristic
damping (or anti-damping) rate from the bending field.

In a straight system, quantum excitation is absent because the
transverse action must decrease after every photon emission to
satisfy the kinematic constraints. In a bent system, the disper-
sion effect may introduce a random fluctuation of the transverse
action. Nevertheless, because of the discreteness of the trans-
verse action, there seems to exist a set of consistent conditions
under which quantum excitation is prohibited even in a disper-
sive system [2].

V. CONCLUSION
The basic results obtained here apply to straight or bent,

focusing-dominated systems. The excitation-free, asymmetric
radiation damping in such systems is the direct consequence of
the kinematic requirements and does not depend on the vari-
ous approximations used above. There may be interesting ap-
plications of this phenomenon in beam cooling. For example,
in a sufficiently low-energy, focusing-dominated electron ring,
this damping effect could perhaps be utilized to obtain ultra-cool
beams in transverse phase space without much energy loss. Since
the system is free of radiation excitation, the actual equilibrium
beam emittance will depend upon the details of the application
considered.
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