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A quasi-classical method is developed to calculate the radlatg)lrlr:lgtllzon’ I'eé’cg\gga:_ﬁ XZ}EZZ + Bcwith B, mect + p;C
damping of a relativistic particle in a straight, continuous focus- , P zr ' _ .
) L ; A quantum mechanical theory of radiation and radiation re-
ing system. In one limiting case where the pitch angle of the,. . .
; . - . action for such a system was given in Ref. [2]. We only need
particled, is much larger than the radiation opening angle,1

P e " .to know thatEx = (n + 1/2)hw,, wheren = 0, 1, 2, ... is the
the radiation power spectrum is similar to synchrotron radiation > ;
. . L ransverse quantum number and = /Kc?/E; is the trans-
and the relative damping rate of the transverse action is propor- o -
verse oscillation frequency. For sufficiently large quantum num-

tional to the relative energy loss rate. In the other limiting cage 7 . o
e ; ern, the transverse motion is classical and the radiation can be
whered, « 1/y, the radiation is dipole in nature and the rela;,

. ) L ; de:f‘cribed by classical electrodynamics provided that the typical
tive damping rate of the transverse action is energy-lndependeﬁloton energy emitted is much smaller than the energy of the

an_d is much faster than th? reI_at|ve energy r_ate. Qu_antum eycé}'rticle. Thus the energy radiated per unit solid angle per unit
tation to the transverse action is absent in this focusing chanrj)e quency is given by [3]
These results can be extended to bent systems provided tha & yisg y

't

focusing field dominates over the bending field. d2E w2
dQdw  4r2c
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[. INTRODUCTION L. _ .
wheren is the unit vector from the source to the observation
Radiation reaction including damping and quantum excitgoint, Ac andr are the velocity and position of the particle at the
tion has been studied extensively in synchrotrons and storaggirded time’.
rings [1]. Recently, we demonstrated [2] that in a straight, con-We can express Eq. (1) in the form of a double integral with
tinuous focusing channel, the radiation reaction is essentialBspect td; andt,:
different from that in a bending magnet. A fully quantum me-
chanical approach was used to investigate in detail the radiatiord®E _ Ew? [ dt * db(G. - By — 1) @12 2
reaction in the casgé, <« 1 where the radiation is formed over dQdw 4712(:/ 1Kw 2(f1-P2 =D G
many oscillation wavelengths. We have shown that the trans- - .
verse action damps exponentially with an energy-independ®itere we have introduced the notatifn, = B(t12), f12 =
damping rate, and that no quantum excitation is induced¢@ys T(t12) and®12 = w(ti2 — i - F12). Going over to the new
becomes much larger than one, the radiation is formed in a snvalfiables of integratiohn andz via the transformatioty, =t —
portion of one wavelength, which can be nearly replaced byrgw, andt; = t 4+ 7 /w,, and treating the integrand in the integral
segment of a circle. Therefore, both the radiation spectrum anih respecttd as the angular spectral distribution of the radiated
the radiation damping will be similar to that from a sequence pbwer at timet, we have
bending magnets. Inthis paper, to illustrate the smooth transition 3
between these two limiting cases, we develop a quasi-classical d°E
method to evaluate the radiation damping rate for péy and dtdQde

obtain the expected results in both small and Iargg limits. The averaged radiated power is obtained by integrating over

Then we extend these findings to focusing-dominated bent S}é?eida) and then averaging over one oscillation period (indicated

tems gnd consider the possibility of beam cooling based on %y ()). In the system we consider here, it can be shown that [4]
damping effect.
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Il. RADIATION <H> =’ /O §dg / —o(@ 6 (@)
Let us consider a planar focusing system that provides a con- f(z, &) = 267[1+ y203(1 - sirf 1/7?)/2],

tinuous parabolic potentiak x2/2, whereK is the focusing . .
strength. A charged particle with enerfy= ymc(y > 1) 9(r.§) = Jo(u) + VZ@S Sire [ Jo(W) — i J1 (W],
oscillates in the transversedirection while moving freely in U=y?038(sift/t —sin2/2), & =w/2y%w,,

the longitudinak direction with a constant longitudinal momen-

tum p; in the absence of radiation. Define the pitch angle &1dJ,(u) is the Bessel function of order(v = 0, 1, 2, ...).

the particled, = Px.max/ Pz (Px.max being the maximum trans-  Equation (4) is completely general for apy,. The con-
verse momentum) and assume thats always much less thantour of integration with respect te must be displaced below

one. The motion of the particle can be decomposed into tif# real axis around = 0 to guarantee the vanishing radiation
when the field is switched off [4]. The range ofthat gives

*Work supported by Department of Energy DE-AC03-76SF00515 a significant contribution to the integral can be defined as the



ratio of the radiation formation lengthto the oscillation wave- The energy and the longitudinal momentum conservation require
lengthi, = 27/E;/K = 27¢/w, [5]. Sincel, is of the order AEyx =~ hw(1 — B cosd)[2], whered is the angle between the
{0)/v [1], where(p) is the averaged radius of curvature and cgohoton direction and the longitudinal direction. Writingy, ~

be approximated a@) ~ E/(KA) ~ 15/A ~ /6, the ratio —Rww,/2E ~ —hww,07/4Ex, we get

I; /2, is inversely proportional tg6,. We consider two oppo- 5

site limitsy 6, > 1 andy6, < 1 where Eq. (4) can be greatly A =P (1—pcosd +05/4) [w, (9)

simplified. _ _ which is always positive definite. Thus the transverse action al-
_Inthe casg/0p > 1orlr < 2, using the integral representayyays decreases after a photon emission process and the quantum
tions of the Bessel functions and the method of stationary phasgitation is absent in such a system. This result was obtained for
aroundr = 0, we obtain the asymptotic expression of Eq. (4) [§he transverse quantum numbrebased on the same kinematic
5 2 m o o argument in Ref. [2].
<d_E> - 4e’y%o; / dy gdg/ Ks;a(y)dy,  (5) The damping rate of transverse acti@ghl, /dt) is obtainable
dt Vare Joz 27 Jo x by replacingA F in Eq. (8) withA J, in Eq. (9). With the expan-

sion 1— B cost = 1/(2y?) + 62/2, (d J/dt) can be written as
wherey = 4\/§$/.[3y9p(1—sinw)1{2] andKs3(y) isthe modi- g Jxl/dt§3+ «d sz/d/t(>,)\;vr)1ere /2 (dJ/dn
fied Bessel function of order/3. This expression is very similar
to the frequency spectrum of synchrotron radiation [3], with dla\ 1,1 05\ /dE
here playing the role ab/w.. Thus the equivalent critical fre- dt [ w_z(z_yZ _) dat/
quency iswe ~ y30,0;,, or the equivalent rotational frequency dl, 2r/wz g dt 162 d3E
iS wg ~ C/{p) ~ Opwy. <T>_,/ o= /da) de_Em (20)

In the casey6, < 1orl, > A, expanding the integrand in 0 z

Eq. (4) to leading order ip6, and applying contour integration The first of the above equations is simply proportional to the
in the complex: plane, we get [5] rate of energy loss found in the previous section. The second
one involves a more complicated angular integral. Together they
account for the radiation damping for apg,,.
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dt In the case/6, > 1, Eq. (10) can be simplified as [5]
where ®(1 — &) is the Heaviside step function. Sinée= dda\ ie_g dE (11)
w/2y%w,, we conclude that the radiation frequency distribution \ dt | w, 4\ dt/

has a sharp cutoff aty = 2)2w,, which is the characteristic of ddo ie2 0o [ © dr .
dipole radiation. —) = wzy gp/ ng/ “h(r, £)e @,
. . dt 2rcC 0 o T
In both cases, we can carry out the integrals in Eq. (5) and (6) 3 3
and find the averaged radiation poweE/dt) = e°y*65w3/3c. h(t, &) = Jo(U) +iJ1(u) + yzeg sinzr[ o(W) + Z(U)].
By using relation®? ~ 2E/E ~ 2nhw,/E andw? ~ Kc?/E, N o 2 2 _
we see that the rate of energy loss agrees with that in Ref. [2All quantities used above are defined in Eq. (4). Similar to the
calculation of the averaged radiation power, we can show [5]
lll. RADIATION DAMPING (d Ja/dt) = 2(d Jo/dt) = e?y*05w,/12c. By using the rela-
g /(2w,), itis straightforward to obtain

The differential radiation power spectrum (i.e., Eq. (3)) can BN Jx/E =0
used to define the differential number rate of photon emissions as 1/dJ 31/dE
follows: Let R(w, 2) be the number of photons emitted per unit J_<W> = ZE<E>
time with energies betwednw andh(w + dw) in the directions X
betweere2 and2 + dQ, i.e., Thus, the relative damping rate of the transverse action is pro-

portional to the relative energy loss rate, which depends on both
1 dE 2y €nergy and the transverse action. This result resembles the radi-
Ao dtdQdew (7) ation damping in a bending magnet [1], with the numerical dif-

. . ference due to the chromatic effect and the sinusoidal variation
then the average rate of change of any physical quantity=say ¢ the focusing field [5].

(12)

R(C(), Q) =

is given by In the casg/6, « 1, Eq. (10) becomes [5]
dF 2r/oz g, dt dJaq 1 1 [dE
— )= —= Q|AF (0, Q)|R(w, Q X = (=
<dt> /0 2 /d“’/d ‘ (@, )‘ @, 2), (8) < dt > wzzy2<dt >
whereAF (v, Q) is the change oF after a photon with energy <%>= o, /Oo de /OO d_fg(r, £)e @O (13)
R is emitted in the directio®. For example, the rate of energy dt mc o T2

loss (d E/dt) is obtained by replacingF with AE = hw and  Applying contour integration again, we can show [5]
is given in the previous section. (dJ1/dt) = (dJo/dt) = ezyzeng/Gc. Therefore,

The transverse actiody is defined through the relatiody =
Ex/w; = (n 4+ 1/2)h ~ nh. For small change ofl, after dd\ 1927/29,§wz 21K
a photon emission, we hawtJ, ~ AEy/w, — Aw,Eyx/w?2. <E> 3 ¢ ~ 3'mc

s (14)



wherere, = €2/m¢ is the classical electron radius. We sethe focusing field is about nine times as fast as the characteristic
that the transverse action damps exponentially with an energgmping (or anti-damping) rate from the bending field.
independent damping constai = 2r.K/3mc. An identi- In a straight system, quantum excitation is absent because the
cal result for the transverse quantum numievas obtained in transverse action must decrease after every photon emission to
Ref. [2] for the “undulator regime” whergé, <« 1. We also satisfy the kinematic constraints. In a bent system, the disper-
notice that the relative damping rate of the transverse actiorsien effect may introduce a random fluctuation of the transverse
much faster than the relative energy loss rate in this regime siraation. Nevertheless, because of the discreteness of the trans-
verse action, there seems to exist a set of consistent conditions

e = i<d_‘]x> > i<d_E> = Eyzgg ) (15) upder which quantum excitation is prohibited even in a disper-
Ji\ dt E\ dt 2 sive system [2].
We have shown that the radiation damping in a straight, con- V. CONCLUSION

tinuous focusing channel is fundamentally different from that
in a bending magnet. In the longitudinal direction the particle The basic results obtained here apply to straight or bent,
recoils against the emitted photon to conserve the longitudif@fusing-dominated systems. The excitation-free, asymmetric
momentum between the two particles. However, in the trarf@diation damping in such systems is the direct consequence of
verse direction, the existence of the focusing force destroys the kinematic requirements and does not depend on the vari-
momentum balance and suppresses the direct recoil effect. A%/a approximations used above. There may be interesting ap-
result, the radiation reaction is not opposite to the photon emidications of this phenomenon in beam cooling. For example,
sion direction, but always has a component pointing towards tilea sufficiently low-energy, focusing-dominated electron ring,
focusing axis. this damping effect could perhaps be utilized to obtain ultra-cool
beamsintransverse phase space without much energy loss. Since
IV. FOCUSING-DOMINATED SYSTEMS the system is free of radiation excitation, the actual equilibrium
am emittance will depend upon the details of the application

So far we have assumed that the focusing system is straignt.” .
nsidered.

In fact, the above discussion can be extended to bent systems
der certain conditions. Consider a bent system with a constant
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wherers = Ag/2nr = JE/K = c/ws is the reduced beta-
tron wavelength. Equation (16) shows thapify > iz, the
transverse damping due to local oscillations is much stronger
than that from the global bending of the trajectory. Since
p/y = E/yecB = mc/eB, we conclude that in a system that
satisfiesmc/eB » E/K or K > y€?B?/m, the radiation
damping is dominated by the focusing field.

To illustrate the choice of parameters for such a system, we
consider a numerical example: a focusing-dominated low en-
ergy electron ring. Let us assume that the radius of the ring is
o = 33m and thaE = 0.1GeV electrons circulate around the
ring. A rather weak magnetic fielB = 0.01T is required to
confine the particles on the ideal circular trajectory. Suppose
along the ideal trajectory, the electrons are continuously focused
with the focusing strengtk = 30GeV/m?, so the reduced be-
tatron wavelength is about 58cm andp/y is about 17cm.
From Eg. (16), we see that the transverse damping rate due to



