PROPERTIESOF A TRANSVERSE DAMPING SYSTEM,
CALCULATED BY A SIMPLE MATRIX FORMALISM

S. Koscielniak and H.J. Tran*
TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., V6T 2A3 Canada

Abstract

Inasynchrotron, proton beams withinjection steering errors per-
form coherent betatron oscillations, possibly of large amplitude.
The oscillations may be damped by using a system of a beam
position monitor and a variable, fast kicker combined in a feed-
back loop to form a ‘transverse damper’. The system of ring,
beam and damper can be modeled by iteration of a matrix map-
ping once per turn. Thispaper reportsthe cal culation of damping
rates, and coherent tune shifts by analytic solution of the recur-
sions. Two cases are treated: (i) kick proportional to beam dis-
placement; and (ii) ‘bang-bang’ damping in which, above a cer-
tain threshold, the kick depends only on the sign (+/—) of the
displacement. We demonstrate (under certain conditions) that
the ‘bang-bang’ scheme providesalinear damping of the ampli-
tude and no tune shift, and (for the same peak power) is faster
than the conventional proportional damper which produces an
exponential damping with time.

I. INTRODUCTION

The aim of adamping system isto reduce the betatron oscilla-
tion of abeam as fast as possible. The damper may be designed
toreduceinjectionerrors, or tocombat coherent instability; often
the damper services both aims and its performance is a compro-
mise: the effect of the kick issmall compared with the displace-
ment and it takes many repeated kicksto bring thebeam on axis.
If the oscillation amplitude is not reduced in a short period of
time, then nonlinear effects which tend to accumul ate withtime,
can dilute the emittance and reduce the beam quality. Infact, if
filamentation is great enough the coherent motion ‘washes out’,
thedipolesignal vanishesand damping stops. A further concern,
isthat growthrate of acoherent instability isproportional to dis-
placement; and if the condition for instability occurs during in-
jection, theinitial errors can be large. For these reasonsitisim-
portant to provide fast damping. Further, if a damper intended
to combat instability (later in acceleration) is used to reduce in-
jectionerrors, itsresponsewill saturatefor large amplitudes; and
we should till liketo find the damping rate.

A. System model

We shall use the single particle model of coherent beam mo-
tion and linear opticsto illustrate the working of the system and
derive its properties. Figure 1 shows the essential components
of adamping system. Assume, asisinevitablein practise, that
a beam has been injected into the synchrotron with some error;
and that it oscillates about the closed orbit. The oscillation can
be damped by reducing the net divergencewith afast kicker. For
simplicity, thekicker istaken as athin element that changes only
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Figure1. Scherr;aﬁ: of adamping system.

the divergence but not the displacement at its location. Due to
power limitation of thekicker, the divergenceisreduced a small
amount each revolution, and many kicks are required. Because
the direction of the divergence can be different each time, the
kick direction has to be adjusted accordingly. A beam postion
pick up (PU.) at +; betatron phase advance up stream isused to
provide this feedback information.

B. Kick schemes

We shall consider only two possible kick schemes: (i) the
kick is proportiona to upstream displacement, and (ii) the kick
magnitude is constant but the sign comes from the sign of the
beam displacement. The second scheme is simple to arrange:
thekicker ispowered by a constant supply whose output pol arity
is adjusted each time to damp the oscillation. Thisisknown as
‘bang—bang’ damping. For theproportional kick, thePU.-signal
is used to drive a linear amplifier that powers the kicker. This
eliminatesthe possibility of ‘over kicking' the particle, asisun-
avoidablewith aconstant magnitudekick. Inreality alinear am-
plifier will saturate at some peak power, and so above a certain
threshold displacement, the magnitude of thekick becomes con-
stant. Consequently, with thisarrangement, thetime sequence of
kicksisacombination of proportional or constant. However, for
simplicity, we only derive the damping characteristics of either
purely proportional or purely constant-magnitude kicks.



I1. PROPORTIONAL KICK

Consider first the case of a proportiona kick, which leads to
exponentia damping of the betatron oscillation. We will outline
the derivation of the coherent tune shift and the dependence of
the damping coefficient on the beta function and phase advance.
We adopt a vector notation in which the first component is the
displacement and the second the divergence.

In Figure 1, x,, denotes the coordinates of the particle a the
pick—up after n revolutionsand likewisey,, a the kicker. The
magnitude of thekick is

where k is the kick strength proportionality constant. The dis-
placement is assumed to be unchanged. The coordinates of the
particle on the next turn become

Xn+1 = M'x, = {Ms(M; + K)}x,, , 2

where M isthelinear transfer matrix fromthe PU. tothekicker,
M, isthat fromthekicker (aroundthefar side of thering) back to
the PU., and K isthekick matrix. The modified one-turn map,
M, islinear; so applying the map » timesto the intial coordi-
nates xy, we have

x, = (M')" xq . (3)

Equation 3 is a system of 2 linear homogenous equations with
constant, real coefficients and has solutions of the form

x, = \'e, 4
where A and e are corresponding eigenval ue and eigenvector of
M’. Because M’ is2 x 2 and red, the two eigenvalues and
eigenvectors comein complex conjugate pairs. Let uswrite A =
exp(a+ i) ahde = u+ ¢ v witha, g and u,v real. The com-
plete solution can be written as

x, = e"%*{ey(ucosnu — vsinnp)
(5)

where ¢; and ¢, arerea constants. The oscillation is exponen-
tially damped and has amodified one-turn phase advance ;.. The
damping coefficient « is given by

2 =1 — k(B41)"?sin 41, (6)

where 5 and 3, are the beta function at the pick—up and at the
kicker respectively, and «; the relative phase advance between
them. p isgiven by

+ co(usinny + veosnu)t,

2cos 1 — k(B61)Y?sin 4y
2[1 — k(BB1)" /2 sin ¢q]1/2 7
where i, is the phase advance from the kicker, around the far

side of the ring, to the PU. and « is the unperturbed one-turn
phase advance without damping.

1. CONSTANT MAGNITUDE KICK

When the magnitude of the kick is the same each time, x,, is
given by anonlinear recursion. The mapping contains the sum-
mation over all previousrevolutionsof thefunctionsgn(xy, ), and

(")

cos p =

does not admit an exact solution in closed form. However, we
will show that to first order and under a certain phase advance,
the damping of theamplitudeislinear with turn number and there
is no coherent tune shift.

We start with the one-turn map modified by the constant mag-
nitude kick:

(8)

where A isthe equivaent of the kick transformed upstream to
the pick—up and M is the unperturbed one-turn map of thering.
The map of x,, after n revolutionsisthus

Xp+1 = M(x, + sgn(z,)A),

n—1

x, = M"xq + Z Sgn(xk)M"_kA .
k=0

(9)

The solution x,, can be written in terms of the eigenvalues and
eigenvectorsof M. After somea gebra, the compl ete sol ution of
the displacement can be written

C'cos(ny + ¢)

n—1

+ Dcos(ny + ¢) Z SgN( ) cos(myp + Ag)

(10)

Ly =

n—1

+ Dsin(ny + ¢) Z QN( ) sin(my + Ag),

m=0

where C, ¢, are determined by theinitial conditionsand D, A¢
are determined by the kick strength and «; .

When the kick is independent of amplitude, one can prof-
itably think of the damping as occurring not by changing the di-
vergence, but by changing the closed orbit (C.O.) each turn to
bring it closer to the displaced beam. Given that it is only the
C.0O. which changes we should expect no tune shift. Hence to
first order, we can subgtitute the unperturbed oscillation z,,, =
C cos(mi) + ¢) insgn(z,,, ) on the right hand side of equation
(10). In order to evauate the sum, we approximate sgn[z,,,] by
cos(my + ¢). After summation, collectingliketermsgivesfour
sinusoidal terms of equal phase advance per turn. Hence, to first
order thereisno coherent tuneshift of the damped oscillationand
so thetria solution is self-consistent. Neglecting the two sinu-
soidal terms whose amplitudes are constant and small compared
to the initial beam amplitude, the damped oscillation decreases
linearly asn. For thespecia caseinwhich isan odd multiple
of 7/2 and the derivative of the betafunction at the PU. is zero,
the damped oscillation can be written as

zn & (A —nA)cos(ny + @), (1)

where A isthemodified initial amplitude and thelinear damping

rate
A= /BpiAY].
depends on the constant magnitude kick.

(12)
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Figure 2. Linear damping by constant magnitude kick.

300

V. SIMULATION OF DAMPING

We have computer simulated adamping system with constant
magnitude kick to compare the results with the linear damp-
ing rate given in equation (12), and also to confirm that thereis
no coherent tune shift for any phase advance between PU. and
kicker. A damper subroutine was written and incorporated into
the multiparticle-tracking injection-simulation code ACCSIM.
The opticsassumed wasthat of the KAON Factory Accumulator
ring. Asacheck, the code was used to simulate the case of apro-
portional kick, where the damping coefficient and tune shift can
be compared with exact expressions (6 and 7); and the accuracy
was found to be satisfactory.

Figure 2 shows the displacement of the particle as registered
by the pick—up asthe oscillation isbeing damped with aconstant
magnitudekick of |[Ay’'| = 0.1 mrad. The largeinitia displace-
ment was chosen to highlight the linear decay of the amplitude.
However, to allow Fourier analysisand extraction of thetune, we
have chosen |Ay’| = 0.005 mrad which damps an amplitude of
about 100 mm in afew thousand turns. Theresultstabulated be-
low arefor five different phase advances ¢, between the pick—up
and the kicker, including the special case of #/2. All five cases
exhibit linear damping and, inall cases, thetune shiftislessthan
5 x 10~%, whichistheresolution limit of the FFT. Thisconfirms
that there is no tune shift.

Table | : Simulationsfor constant magnitude kick.
Py 51 2rAv Damping rate
2 (m) %1076 (103 mm/rev)
0.2347 | 5262 | —10.0+0.1 | —21.93+0.05
0.2500 | 6.033 | 0.0+0.10 | —23.63+0.05
0.3141 | 15891 | 40.0+0.1 | —35.34 +0.05
0.4508 | 9.303 | 50.0+0.1 —8.81+£0.05

For the special case vy = =/2, we can compare the actua
damping rateto that given by the approximateformula(11). The
formulagivesalinear decay rate of 37.14 x 10~3 mm/rev and
the actua rate (from simulation) is (23.63 £+ 0.04) x 1073
mm/rev. The discrepancy islarge, and is due to the approxima-
tion of sgn(x,, ) by cos(my + ¢) in the derivation. Given that
|[son(zm)| > |cos(my + ¢)| and kicks in the simulation are
larger than in the approximate summation, it may surprise that

the simulated damping rate issmaller. However, with a constant
kick, there will be times when the kick is too large which re-
sults in temporary antidamping. However, if the kick is scaled
as cos(niy + ¢) theresulting damping is more effective, because
thereisless over kicking. Hence the formula (12) dightly over
estimates the damping rate, but can estimate the kick require-
ment Ay’ if used with care.

V. PERFORMANCE CONSIDERATIONS

According to the expression (6) for the exponential damping
coefficient, the pick—up and the kicker should be placed as close
as possible to where the beta function has its maximum values
and therel ative phase advance should beideally an odd multiple
of /2. Thisarrangement produces the fastest damping because
the displacement of the particleis greatest at the PU. and this,
inturn, leadsto large proportional kicks. The same arrangement
also workswell for the case of damping with constant magnitude
kick; because the given kick makes the largest possible change
to the closed orhit.

If the amplifier has infinite power resources, then obviously
exponential damping is faster than linear damping. In redlity,
theamplifier will saturate and so for the same peak power linear
damping is often faster. For an oscillation amplitude at the peak
power limit, and proportional kicking, thenumber of revolutions
n, required to damp the amplitudeto 1 /¢ is:

np = 2/[kv/B]

For the same amplitude and peak power, and constant magnitude

kicking,
n. = 1/[ke /B8] . (14)

Accordingly, linear damping is ~ 2e faster than exponential
damping for the same peak power. A drawback of linear damp-
ing is that it does not damp the amplitude down to zero. To
achievethis, some final stage exponential damping is hecessary.

V1. CONCLUSION

We have derived the characteristics of damping systems with
purely proportional kick and purely constant magnitudekick un-
der certain conditions. We have found that proportiona kick
produces exponential damping and induces a coherent betatron
tune shift; whereas the constant magnitude kick produces linear
damping and no coherent tune shift. We have also considered the
damping performance of these two types of kick with practica
power supply constraintsand found that linear damping isfaster.

(13)
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