
                
COUPLING IMPEDANCE OF A LONG SLOT AND AN ARRAY OF

SLOTS IN A CIRCULAR VACUUM CHAMBER ∗

G. V. Stupakov, Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA

Abstract

We find the real part of the longitudinal impedance for both a
small hole and a long slot in a beam vacuum chamber with a
circular cross section. The length of the slot can be arbitrarily
large, the only requirement on the dimensions of the slots is that
its width be much smaller thanc/ω. Regular array ofN slots
periodically distributed along the pipe is also considered.

I. INTRODUCTION

Existing theory for the impedance produced by small holes in
the wall of a vacuum chamber of the accelerator has been de-
veloped in papers by Kurennoy [1] and Gluckstern [2]. They
applied Bethe’s approach developed for study of diffraction of
an electromagnetic wave on a perfectly conducting plane screen
with a small hole [3] to the problem of radiation of the beam
propagating in a circular pipe having a hole in its wall. The
method is based on utilization of small parametersαel

/
b3 and

αmg
/

b3, whereαel is the electric andαmg is the magnetic polar-
izabilities of the hole, andb is the beam pipe radius. For circular
holes,αmg ∼ |αel| ∼ w3, wherew is the radius of the hole, and

these ratios are of the order of
(
w

/
b
)3

. This theory also assumes
that the wavelength of the electromagnetic waves radiated by the
hole is much larger than the dimensions of the hole. In the first
approximation of the perturbation theory, the impedance is ex-
pressed in terms of polarizabilitiesαel andαmg and turns out to
be purely imaginary1

Z = − Z0i ω

2πcb2

(
αel + αmg

)
. (1)

In many cases it is necessary to know the real part of the
impedance. In this paper we find ReZ for small holes and slots
of arbitrary lengthl , assuming only that the width of the slotw

is much smaller thanb andc/ω. We also find the impedance of a
regular array ofN slots. A more detailed study of relevant issues
including the effect of randomization of the slot positions in the
array, can be found in Ref. [4].

II. REAL PART OF THE IMPEDANCE FOR A
HOLE

To calculate the longitudinal impedance of a circular beam
pipe with a hole, it is convenient to consider an oscillating current
traveling with the velocity of light along the axis of the pipe,

I (z, t) = I0 exp(−i ωt + i κz) , (2)
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1Our definitions ofαel andαmg agree with the Bethe’s paper [3]. They are two

times larger than those used by Kurennoy [1].

whereκ = ω/c. The pipe is assumed to have a small hole
located atz = 0 with characteristic dimensions much less than
pipe radiusb. Perturbation of the electromagnetic field caused by
the hole can be represented as a superposition of the waveguide
modes propagating away from the hole.

We choose normalization of the eigenmodes in a circular pipe
such that forE modes

E(n,m)
z = µ2

n,m

b2
Jn

(
µm

r

b

)
cos(nθ)exp(σ i κn,mz), (3)

and forH modes

H (n,m)
z = µ′2

n,m

b2
Jn

(
µ′

n,m

r

b

)
cos(nθ)exp(σ i κ ′

n,mz), (4)

whereJn is the Bessel functions of thenth order,µn,m is themth
root of Jn , µ′

n,m is themth root of the derivativeJ ′
n, κn,m =√

ω2 − ω2
n,m

/
c, κ ′

n,m =
√

ω2 − ω′2
n,m

/
c, ωn,m = cµn,m

/
b,

ω′
n,m = cµ′

n,m

/
b, andb is the radius of the waveguide. The

variableσ denotes the direction of the propagation of the wave;
σ = +1 corresponds to the waves propagating in the positive di-
rection along thez-axes, andσ = −1 marks the waves traveling
in the opposite direction.

In the first order of the perturbation theory, the electromagnetic
field scattered by the hole into the waveguide is characterized by
the amplitudesan,m (σ ) such that

F = h(z)
∑
E, H

∑
n,m

an,m (σ = 1) F (n,m) (r, z, σ = 1)

+h(−z)
∑
E, H

∑
n,m

an,m (σ = −1) F (n,m) (r, z, σ = −1), (5)

whereh (z) is the step function andF denotes any of the compo-
nentsEz, Er , or Hϑ . The factorsan,m can be expressed in terms
of the electricαel and magneticαmg polarizabilities of the hole
[1]

a(E)
n,m = 4I0

(
καmg + σκn,mαel

)
cb2κn,mµn,mJ ′

n

(
µm,n

) (
1 + δn,0

) , (6)

for an E mode, and

a(H)
n,m = − 4nI0

(
σκ ′

n,mαmg + καel
)

cb2κ ′
n,m

(
µ′2

n,m − n2
)

Jn
(
µ′

m,n

) , (7)

for anH mode. CalculatingZ using Eqs. (5) – (7) with the help
of the following relation,

Z = − 1

I0

∞∫
−∞

dz Ez (z, r = 0) exp(−i ωz/c) , (8)

gives Eq. (1).



            
The real part of the impedance of a hole arises in the second

order of the perturbation theory based on the smallness of the
parametersαmg

/
b

3
andαel

/
b

3
. It turns out, however, that we

can find the real part of the impedance without going to higher
orders if use is made of the following relation between the ReZ
and the energyP radiated per unit time by the hole :

P = 1

2
I 2
0 ReZ (ω) . (9)

The energy fluxP in Eq. (9) should include all the waves
radiated by the hole, both inside and outside of the waveguide.
The outside radiation will depend on the geometry and location
of the conducting surfaces in that region and cannot be computed
without knowing particular details of the specific design. Here
we neglect its contribution, assuming that the thickness of the
pipe wall is large enough so that the electromagnetic field does
not penetrate through the hole.

Inside the waveguide, we have to take into account the radia-
tion going into allE andH modes. The energy flow in the mode
of unit amplitude is equal to

P(E)
n,m = 1 + δ0,n

16
ωκn,m µ2

n,m J ′2
n

(
µn,m

)
, (10)

and

P(H)
n,m = 1 + δn,0

16
ωκ ′

n,m

(
µ′2

n,m − n2
)

J2
n

(
µ′

n,m

)
, (11)

respectively. The energy flux in each mode radiated by the hole
is given by

∣∣an,m (σ = 1)
∣∣2 Pn,m and

∣∣an,m (σ = −1)
∣∣2 Pn,m in

the forward and backward directions, respectively. It is evident
that this radiation occurs only if the frequencyω is larger that the
cutoff frequencyωn,m (or ω′

n,m).
The total energy fluxP is

P =
∑
E, H

∑
n, m

∑
σ=±1

Pn,m

∣∣an,m

∣∣2 , (12)

where the summation is carried out over both directions of prop-
agation,σ = ±1, all possible values ofn andm, and also over
E andH modes. Combining Eqs. (9)–(12) yields the following
equation for the contribution ofE andH modes into the real part
of the impedance:

ReZ(E) = Z0

π

ω2

c2b4

∑
n, m

1(
1 + δn,0

) F (E)

(
ω

ωn,m

)
, (13)

where

F (E) (x) = α2
mgx

2 + α2
el

(
x2 − 1

)
x
√

x2 − 1
(14)

for x > 1, andF (E) (x) = 0 for x < 1. For theH modes

ReZ(H) = Z0

π

ω2

c2b4

∑
n, m

n2

µ′2
n,m − n2

F (H)

(
ω

ω′
n,m

)
, (15)

where

F (H) (x) = α2
elx

2 + α2
mg

(
x2 − 1

)
x
√

x2 − 1
(16)

for x > 1, andF (H) (x) = 0 for x < 1.
Eqs. (13) and (15) apply also for short slots such thatl ¿ b

andlκ ¿ 1. For a large aspect ratio,l À w , we haveαmg ≈
−αel, and F (E) (x) = F (H) (x). In this case, the plot of the
Re

(
Z(E) + Z(H)

)
measured in unitsα2

mgZ0
/
πb6 as a function of

ωb
/

c is shown in Fig. 1.
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Figure. 1. Real part of the impedance of a short large-aspect-
ratio slot as a function of the frequency (solid curve), and a high-
frequency approximation given by Eq. (17) (dotted curve).

Because the functionsF (E) (x) and F (H) (x) go to infinity
when x → 1, ReZ has singularities at the cutoff frequencies
ωn,m andω′

n,m. Formally, this happens because the amplitude
of the radiated waves given by Eqs. (6) and (7) scales asκ−1

n,m
whenω approaches a cutoff frequency. The actual height of the
cutoff peaks will be determined by higher order corrections of
the theory and finite conductivity of the walls.

In the limitω À c
/

b, a large number of harmonics is involved
in the sums (13) and (15). By considering them to be continu-
ous variables, it is possible to integrate overn andm instead of
summing. This integration yields

ReZ = 2

3π
Z0

ω4α2
mg

c4b2
. (17)

This function is also plotted in Fig. 1; it give a good approxi-
mation of the averaged dependence of the ReZ, even for small
frequencies.

III. REAL PART OF THE IMPEDANCE FOR A
LONG SLOT

To find the real part of the impedance of a long slot for whichl is
comparable or larger thanb and/orκ−1, we consider the long slot
as a distributed system of magnetic and electric dipoles. The field
radiated by the slot consists of the waves coming from different
elements of the slots with a relative phase advance between them.
For two infinitesimal elements located at distancez, the phase
advance is composed of two parts. The first part is due to the
change of phase of the driving field of the beam, and is equal to
κz. The second part is caused by the relative phase shift of the
two radiated waves, and is equal to−σκn,mz, whereσ = ±1
for the forward and backward propagating waves. The total



              
phase exponent, exp(i κz − i σκn,mz) should be integrated over
the length of the slot, yielding the factor

fn,m (σ ) = 1

l

l∫
0

exp(i
(
κ − σκn,m

)
z) dz =

1

i l
(
κ − σκn,m

) [
exp

(
i (κ − σκn,m)l

) − 1
]

(18)

for theE modes and a similar factorf ′
n,m (σ ), for whichκn,m →

κ ′
n,m in Eq. (18), for theH modes. These factors multiply the

amplitudesa(E)
n,m anda(H)

n,m in Eqs. (6) and (7). Combining all these
changes, and taking into account that for a long slot,αel = −αmg,
results in the following modifications of the functionsF (E) and
F (H) in Eqs. (13) and (15):

F (E) (x) = 2b2

µ2
n,m

(αmg

l

)2 1

x
√

x2 − 1

{
sin2

[
lµn,m

2b

×
(

x −
√

x2 − 1
)]

+ sin2

[
lµn,m

2b

(
x +

√
x2 − 1

)]}
, (19)

andF (H) given by the same expression withµn,m substituted by

µ′
n,m. In the limit l À ∣∣κ − σκn,m

∣∣−1
, the effective length of the

slot that contributes to the real part of the impedance turns out to
be equal to

∣∣κ − σκn,m

∣∣−1
, which means that ReZ (ω) does not

depend onl in the limit l À κ−1 (butκ−1 À w ).

IV. REGULAR ARRAY OF SLOTS

Consider an array ofN identical slots distributed along the
beam pipe such that the distance between the slots is equal tod1.
The system has a periodd = l + d1. The electromagnetic field
scattered by the array is the sum of the fields of individual slots. In
the first approximation of the perturbation theory, the impedance
is equal toN Z, whereZ is given by Eq. (1). However, since the
energy radiated by the array of slots is a quadratic function of the
amplitude of the waves, it will be shown below that, at resonant
frequencies, there is a strong amplification in ReZ which scales
asN2.

To find the radiation fromN slots, it is necessary to sum
their fields, taking into account the relative phase advance be-
tween the fields of deferent slots. As shown in the previous
section, the phase advance between two adjacent slots is equal
to exp

(
i κd − i σκn,md

)
. For N slots, the amplitude of (n, m)

E mode should be multiplied by the following factor:

gn,m (σ ) =
N−1∑
j =0

exp
[
id j

(
κ − σκn,m

)]
= 1 − exp

[
id N

(
κ − σκn,m

)]
1 − exp

[
id

(
κ − σκn,m

)] . (20)

The square of the absolute value ofgn,m (σ ), multiplies each sine
term in Eq. (19) modifying the functionF (E) into the following
expression:

F (E) (x) = 2b2

µ2
n,m

(αmg

l

)2 1

x
√

x2 − 1

{
sin2

[
lµn,m

2b

×
(

x −
√

x2 − 1
)] sin2

[
d Nµn,m

2b

(
x − √

x2 − 1
)]

sin2
[

dµn,m

2b

(
x − √

x2 − 1
)] +

sin2
[

lµn,m

2b

(
x + √

x2 − 1
)]

sin2
[

d Nµn,m

2b

(
x + √

x2 − 1
)]

sin2
[

dµn,m

2b

(
x + √

x2 − 1
)]

 .

For theH modes, the functionF (H) (x) containsµ′
n,m instead of

µn,m.

The maximum value of
∣∣gn,m

∣∣2 in Eq. (20) is equal toN2 and
is attained when the following condition holds

d
(
κ − σκn,m

) = 2qπ, (21)

whereq is an integer. For largeN, Eq. (20) represents narrow
peaks with a width at half height1ω

/
ω ≈ 1

/
(2q N) at the

resonant frequencies. This implies that theQ factor for these
resonances can be estimated asQ ≈ q N.

If d
/

b = 2πq
/
µn,m (or d

/
b = 2πq

/
µ′

n,m), Eq. (21) is
satisfied by the cutoff frequencyωn,m (or ω′

n,m). In this case, the
height of the resonant peaks will be strongly amplified because
of the superposition of the cutoff singularity for a single peak
with a maximum of the

∣∣gn,m

∣∣2 function.
In the limit of very largeN, N → ∞, the width of the res-

onances becomes so narrow that it will actually be determined
by the finite conductivity of the wallsσ . The transition to this
regime occurs whenQ becomes comparable tob

/
δ, whereδ is

the skin depth at the resonant frequency. Previously, this regime
has been studied in detail for an infinitely long periodic bellow
in Ref. [5], where the resonance conditions (21) have also been
found.
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