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Abstract

A method is presented for calculating the high-frequency longi-
tudinal and transverse coupling impedances in a periodic array of
diaphragms in a circular perfectly conducting pipe. The method
is based on Weinstein’s theory of diffraction of a plane elec-
tromagnetic wave on a stack of halfplanes. Using Weinstein’s
solution, it is shown that the problem of finding the beam field in
the pipe reduces to an effective boundary condition at the radius
of the diaphragms which couples the longitudinal electric field
with the azimuthal magnetic one. Solving Maxwell’s equations
with this boundary condition leads to simple formulae forZlong

and Ztr . A good agreement with a numerical solution of the
problem found by other authors is demonstrated.

I. INTRODUCTION
Studies of the impedance at the frequencies much higher than

the cutoff frequency have a long history with many theoreti-
cal and numerical results obtained for different types of accel-
erator structures (see e.g. a special issue of Particle Acceler-
ators journal devoted exclusively to this subject [1]). One of
the major problems addressed by several authors is the high-
frequency impedance of multiple cavities or a periodic system of
diaphragms [2-5]. There is a general consensus that, for largeω,
the longitudinal impedance in this system scales asymptotically
asω−3/2. Specifically, for a periodic array of thin diaphragms,
in the limit ω → ∞, the real part ofZlong per one cell can be
approximated by the following function:

ReZlong (ω)
/

Z0 ≈ f
(
g
/

a
)3
(kg)−3/2 , (1)

wherek = ω/c, Z0 = 4π
/

c = 377Ä, g is the distance between
the diaphragm openings,a is the radius of the diaphragms, and
f is a numerical factor. However, various authors find different
values for f which deviate almost by the order of magnitude:
f = π−1/2 in Ref. [3], f = 8π−1/2 in Ref. [4], and according
to the Sessler - Weinstein model [2],f = 0.67π−1/2.

Apart from differing numerical values forf , Eq. (1) itself
gives a rather poor approximation in the region 10< kg < 20
typical for practical applications in accelerator physics. The rea-
son for Eq. (1) to be relatively inaccurate is that the actual param-

eter in asymptotic expansion (1) is(kg)1/2 (or even
(
kg
/
π
)1/2 )

rather thankg. This makes it necessary to seek better asymptotes
than the leading term represented by Eq. (1). Refs. [2-3] indeed
provide a more accurate expressions that reduce to Eq. (1) in the
limit (kg)1/2À 1.

In this paper an attempt is made to revise the approach to
the calculation of the impedance of the periodic system of di-
aphragms using a more adequate physical description of the
beam interaction with the diaphragms. On a qualitative level,
the physics involved has been outlined in Ref. [6]. Its two basic
elements are: a small angle diffraction of the beam field at the
edges of the diaphragms, and depletion of the amplitude of the

field in the region close to the edges due to repeated trapping of
the field energy into the space between the diaphragms. We will
show that this qualitative argument can be cast into a quantita-
tive consideration using a rigorous solution to the diffraction of
a plane electromagnetic wave on an infinite stack of conducting
halfplanes.

II. BASIC ASSUMPTIONS

Consider a relativistic beam with a factor ofγ much larger than
unity, γ À 1, propagating along the axis of a circular pipe with
infinitely thin periodic diaphragms. The azimuthal magnetic
field of such a beam is almost equal to its radial electric field, and
both propagate with the speed≈ c. In that respect, excluding
the vicinity of the axis of the pipe occupied by the beam, the
electromagnetic field can be considered as a free electromagnetic
wave propagating in the pipe. Accepting this point of view, we
intend to apply to the beam field the results derived from the
diffraction of the wave on the edges of the diaphragms.

The analysis of the diffraction is greatly simplified by the fact
that we are only interested in the high frequency band. From
Fresnel theory of diffraction, it is known that the area involved in
the diffraction extends from the edges by distance∼ √g/k, and
occupies an annulus fromr ≈ a− d

√
g/k to r ≈ a+ d

√
g/k,

whered has a value of the order of unity. As soon as
√

g/k is
much smaller than the radiusa, we can neglect the cylindrical
geometry of the problem and consider the diffraction in plane
geometry. We will also assume that

√
g/k ¿ b− a, whereb

is the pipe radius; in this case the pipe wall does not interfere
with the diffraction process, and we can further simplify the
problem eliminating the pipe walls and allowing the field to freely
propagate in the radial direction to infinity [5].

As a result of these approximations we essentially reduce the
problem to the diffraction of a plane electromagnetic wave on an
infinite periodic array of halfplanes the solution for which can
be found in Ref. [7].

III. WEINSTEIN’S THEORY

This section briefly summarizes Weinstein’s results for the
diffraction of a plane wave for an arbitrary incidence angleϕ0, (ϕ0

is measured from the vertical axisy so that the grazing incidence
corresponds toϕ0 = π

/
2). In our case, the beam field propagates

horizontally which corresponds to the limit cosϕ0 → 0 in the
diffraction solution.

Let the position ofmth halfplane be given byz= mg, y ≤ 0.
Consider a plane wave propagating in the halfspacey > 0 at an
angleϕ0 with the vertical axis (0≤ ϕ0 ≤ π

/
2 ) and polarized so

that the only component of the magnetic field is directed along
thex-axis,

Hx = Aexp[ik (zsinϕ0− y cosϕ0)] . (2)

Here and below we assume the time dependence∝ exp(−iωt).



               
The solution to the diffraction problem for the incident wave

(2) [7, Chapter 7] represents the field aty < 0 as a sum of
eigenmodes propagating between the plates:

Hx = A

(
T0e−iky +

∞∑
n=1

Tn cos
πnz

g
e−i κn y

)
, (3)

whereκn =
√

k2− (πn
/

g
)2

, Imκn ≥ 0. Eq. (3) is valid for
0 < z < g; the field betweenmth and(m+ 1)th plates has
an additional factor exp(ikmgsinϕ0) on the right hand side.
Complex values ofκn imply that the corresponding eigenmode
is an evanescent one; it exponentially decays wheny→−∞.

The field in the upper halfspace,y > 0, is given by

Hx = Aeik(zsinϕ0−y cosϕ0)

+A
∞∑

n=−∞
Rneik(zsinϕn+y cosϕn), (4)

where cosϕn =
[
1− (n+ q sinϕ0)

2/q2
]1/2

, q = kg
/

2π ; it is
assumed that Im(cosϕn) ≥ 0. The first term on the right side of
Eq. (4) is the incident wave, and the sum represents the diffracted
waves generated by the periodic structure. One of these waves
havingn = 0 is a mirror reflected image of the incident field; it
has the amplitudeAR0.

The expressions forTn andRn can be found in Ref. [7]. For
our purposes, we will only needR0 as a function ofq andϕ0,

R0 (q, cosϕ0) = −1− cosϕ0

1+ cosϕ0
e4iq cos(ϕ0) ln 2×

∞∏
n=1

1+ cosϕ0

cosϕn

1− cosϕ0

cosϕn

1+ cosϕ0

cosϕ−n

1− cosϕ0

cosϕ−n

1− 2πq cosϕ0

κng

1+ 2πq cosϕ0

κng

. (5)

IV. BOUNDARY CONDITION
To consider the case of horizontal propagation of the wave we

need, first, to find the limit cosϕ0→ 0 in Eq. (5). Using analysis
of Ref. [7], after straightforward though cumbersome algebra,
one can show that in this limit, forkgÀ 1,

R0 = −1+ 2S(kg) cosϕ0, (6)

where the complex functionS(q) is given by

S(x) = 1

2

[
1+ (1− i )

π

√
x

2

((√
2− 1

)
F (2x)+ α

)]
, (7)

where

F (x) =
∞∫
−∞

dt

(
exp

(
t2

2
− i x

)
− 1

)−1

, (8)

and

α = −2

∞∫
−∞

1− et2
/

2+ t2
/

2

t2
(
et2

/
2− 1

) dt = 3.658. (9)

The functionF (x) is a periodic function of its argument with
the period equal to 2π . It has singularities∝ |x − 2mπ |−1/2 at
the pointsx = 2mπ , wherem is an integer.

Turning now to the physical interpretation of the solu-
tion, note that in the limit cosϕ0 → 0, both the inci-
dent wave given by Eq. (2) and the mirror reflected wave
AR0 exp(ik (zsinϕ0+ y cosϕ0)) in Eq. (4) propagate paral-
lel to the horizontal axis. This observation prompts us to believe
that their sum has to be identified with the electromagnetic field
of the beam at the edge of the diaphragms. Using Eq. (6) we
find for the magnetic component of this field:

Hx = Aeikzsinϕ0
(
e−iky cosϕ0 + R0eiky cosϕ0

) ≈
Aeikz

(−2i sin(kycosϕ0)+ 2S(kg) cosϕ0eiky cosϕ0
) ≈

2Acosϕ0eikz (S(kg)− iky) . (10)

In order to obtain a nonzero result when cosϕ0→ 0, we have
to assume thatA goes to infinity so that 2Acosϕ0→ E and

Hx = Eeikz (S(kg)− iky) , (11)

where E is a constant. We see that our solutionrequires the
magnetic field to be a linear function ofy; in other words, for
ϕ0 = π

/
2 the diffraction process imposes a certain constraint

on the behavior of the electromagnetic field near the edges of
the diaphragms. This constraint can be expressed as a bound-
ary condition aty = 0 if one notes that Maxwell’s equation
∂Hx

/
∂y = ikEz combined with Eq. (11) allows to one express

E in terms of the electric field:Ez = −E exp(ikz). Substituting
this relation in Eq. (11) yields

Ez = − 1

S(kg)
Hx|y=0 . (12)

Eq. (12) represents our main result. It relates the longitudinal
component of the electric field to the transverse component of
the magnetic field at the diaphragms.

Note a close resemblance of Eq. (12) to the boundary con-
dition at a conducting wall in the case of high conductivityσ ,
Ez = (i − 1)

√
ω/8πσ Hx|y=0, [8]. This allows us to assign the

diaphragms an effective (complex) conductivityσeff, such that√
2πσeff

ω
= (i − 1)

2
S(kg) . (13)

Using Eq. (13), for a given solution of an electromagnetic prob-
lem in a smooth pipe with finite conductivityσ (ω), one can
find the solution of the corresponding problem in the pipe with
periodic diaphragms by substitutionσ → σeff.

V. IMPEDANCE

Having found the boundary condition (12) we can now return
to the cylindrical geometry of the pipe with the beam and solve
for the beam field in the region 0< r < a. In polar coordinate
system, thex-component of the magnetic fieldHx should be
identified with the azimuthal componentHϑ , so that Eq. (12)
takes the form,

Ez = − 1

S(kg)
Hϑ |r=a (14)

With this boundary condition, a standard derivation (see, e.g.,
[9]) of the longitudinal and transverse impedances,Zlong andZtr ,
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Figure. 1. Real part of the longitudinal impedance.
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Figure. 2. Imaginary part of the longitudinal impedance.

yields :

Zlong = Z0

2πa

1

S(kg)− ika
/

2
, (15)

Ztr = Z0

πka3

1

S(kg)− 1
2 ika+ i (ka)−1 . (16)

Figures 1 and 2 show the real and imaginary parts ofZlong

for the case whena = g. In addition to general fall off of
Zlong with the frequency, it demonstrates peaks and jumps at
ka= mπ , wherem is an integer. This behavior can be explained
as due to a strong coupling, through diffraction, of the beam field
with the modes between the diaphragms having a small radial
wavenumber. These modes have the frequency close toπm/a;
they represent standing waves between two adjacent diaphragms.

In the limit of very high frequency,ω → ∞, the asymptotic
dependence ofZlong (ω) is given by

ReZlong ≈ 2Z0

πk2a3
ReS(kg) , ImZlong ≈ Z0

πka2
. (17)

Note that on the average ReZlong scales asymptotically asω−3/2

in agreement with Eq. (1).

Similar to longitudinal impedance,Ztr has sharp peaks at
ka = mπ , however, it decays more rapidly thanZlong (ω).
Asymptotically, forω→∞,

ReZtr ≈ 4Z0

πk3a5
ReS(kg) , ImZtr ≈ 2Z0

πk2a4
. (18)

VI. DISCUSSION
We compared our result with a numerical solution of a similar

problem in Ref. [5], where a repeated structure of thin irises
has been studied. A close inspection of the plot of ReZlong in
this reference shows a very good agreement with our Fig. 1,
including the positions and the heights of each peak even for
ka as small as 5. This agreement indicates that using a plane
geometry for solution of the diffraction problem turns out to be
a very accurate appoximation even for relatively small values of
ka.

In the limit of very large frequencies, our result agrees with
Eq. (1) with f = 0.26 which is below both Gluckstern’s result
( f = 0.56) and Sessler-Weinstein model (f = 0.37).
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